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XI. 4 Memoir on the Transformation of Elliptic Functions.
By Professor CavLey, F.R.S.

Received November 14, 1873,—Read January 8, 1874.

TuE theory of Transformation in Elliptic Functions was established by Jacosr in the
¢ Fundamenta Nova’ (1829); and he has there developed, transcendentally, with an
approach to completeness, the general case, # an odd number, but algebraically only the
cases n=3 and n=>5; viz.in the general case the formule are expressed in terms of the
elliptic functions of the nth part of the complete integrals, but in the cases n=3 and
n=D>5 they are expressed rationally in terms of » and v (the fourth roots of the original
and the transformed moduli respectively), these quantities being connected by an equa-
tion of the order 4 or 6, the modular equation. The extension of this algebraical
theory to any value whatever of » is a problem of great interest and difficulty: such
theory should admit of being treated in a purely algebraical manner; but the diffi-
culties are so great that it was found necessary to discuss it by means of the formule of
the transcendental theory, in particular by means of the expressions involving Jacosr’s
q (the exponential of — 75%), or say by means of the g-transcendents. Several
important contributions to the theory have since been made :—SoHNKE, “ Equationes
Modulares pro transformatione functionum Ellipticarum,” CrELLE, t. xvi. (1836), pp.
97-180 (where the modular equations are found for the cases n=3, 5, 7, 11,13, 17, & 19);
JouBERT, ¢ Sur divers équations analogues aux équations modulaires dans la théorie des
fonctions elliptiques,” Comptes Rendus, t. xlvii. (1858), pp. 337-345 (relating among
other things to the multiplier equation for the determination of Jacosrs M); and
KONIGSBERGER, “ Algebraische Untersuchungen aus der Theorie der elhptlschen Func-
tionen,” CRELLE, t. xxii. (1870), pp. 176-275; together with other- ‘papers by JOUBERT
and by HermITE in later volumes of the ¢Comptes Rendus,’ which need not be more
particularly referred to. In the present Memoir I carry on the theory, algebraically, as
far as I am able; and I have, it appears to me, put the purely algebraical question in a
clearer light than has hitherto been done; but I still find it necessary to resort to the
transcendental theory. I remark that the case n=7 (next succeeding those of the
¢ Fundamenta Nova’), on account of the peculiarly simple form of the modular equation
(1—w?)(1—v*)=(1—wv)’, presents but little difficulty; and I give the complete formule
for this case, obtaining them as well algebraically as transcendentally ; I also to a con-
siderable extent discuss algebraically the case of the next succeeding prime value n=11.
For the sake of completeness I reproduce SoHNKE’S modular equations, exhibiting them
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398 PROFESSOR CAYLEY ON THE TRANSFORMATION

for greater clearness in a square form, and adding to them those for the non-prime cases
n=9 and n=15 ; also avaluable table given by him for the powers of f(¢); and I give
other tabular results which are of assistance in the theory.

The General Problem.—Article Nos. 1 to 6.
1. Taking n a given odd number, I write
l—y 11—z (P=Qa\?
1+y l+z <P+Qw> ’
where P, Q are rational and integral functions of *, P4-Qu being each of them of the

order 3(n—1), or, what is the same thing, (1+2)(P+Qx)* being each of them of the
order n; that is,

n=4dp+1, n=4p+3,
Order of P in 4® is P, Ps
s Q. p—1, P
whence in the first case No. of coefficients of P and Q is (p+41)4p, =%(n-+1), and
in the second case No. is (p+1)+4(p+1), =34(n+1), as before. Taking

P=a+tya’tert +...,
Q=+ +ai - . .,

1—y 1—z (a—Bz+y2®—...\?
14y 14z \a+pBrtya®+...)°

the formula is

the number of coefficients being as just explained. Starting herefrom I reproduce in a
somewhat altered form the investigation in the ¢ Fundamenta Nova,” as follows.
2. If the coeflicients are such that the equation remains true when we therein change

simultaneously « into 735 and y into %/, then the variables &, y will satisfy the differential

equation
Mdy _ dz
V1= 1=a%2 V1—221—%?

(M a constant, the value of which, as will appear, is given by ﬁ:l{—gf); and the

problem of transformation is thus to find the coefficients so that the equation may
remain true on the above simultaneous change of the values of «, 7.

In fact, observing that the original equation and therefore the new equation are each
satisfied on changing therein simultaneously #, y into —a, —y, it follows that the equation
may be written in the four forms

1—y =(1—2) A%(<+), 14y =(1+2) BY(+),
1=ry=1=k2)C(=), 14ry=(1+k2)C¥(+),

the common denominator being, say E, where A, B, C, D, E are all of them rational
and integral functions of #; and this being so, the differential equation will be satisfied.
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3. To develop the condition, observe that the assumed equation gives

2(P2+2PQ+ Q%%
I= P oPQat+ Q%2 T & SUPPOSS

where CZ{ 35 are functions each of them of the degree $(r—1) in a® (Hence, if with
JACOBI M denotes the value (Y +2)y=0, WE have (1—[— > K =1+%B, as mentioned.)

Suppose in general that U being any 1ntegra1 function (1, 2*)?, we have
U*:(k2x2)P(l, #)” ;
viz. let U* be what U becomes when z is changed into ElaE and the whole multiplied by
(BP2).
Let y* be the value of y obtained by writing %1;} for a; then, observing that in the

expression for y the degree of the numerator exceeds by unity that of the denominator,
we have |

1 g*

Ay v =
whence ‘
1. 9q* .
yy*= BB
and the functions 4, $ méy be such that this shall be a constant value, ::-}:; viz. this

will be the case if :

A BB

T aqE’
which being so, the required condition is satisfied.

4. T shall ultimately, instead of %, A introduce JACOBI'S w, v (u==n/%, v=~/2); but
it is for the present convenient to retain %,and instead of A to introduce the quantity
connected with it by the equation A=£Q?; or say the value of Qis =v*<+w?. The
modular equation in its standard form is an equation between u, v, which, as will appear,
gives rise to an equation of the same order between »? v*; and writing herein ¢’= Qu?,
the resulting equation contains only integer powers of «*, that is of %, and we have an
QZ-form of the modular equation, or say an 2%-modular equation, of the same order in
Q as the standard form is in »; these QA-forms for n=3, 5, 7, 11 will be given pre
sently.

5. Suppose then, Q being a constant, that we have identically

1

A= gre— B*;
this implies 7
O
35 - TEm=1) g*

362
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(In fact if
qd =a+tca... +qx“‘3‘—|-sx"",

B =b+ds?... FravFta,
then
A* =s4-gk%*. .. +ck a2 f-ak" 2,

B*=t+rk%®... A" 0k 2™,

and the assumed equation gives
) l kg kn_3 kn-—l
o= grab =g - (ape % ST e 0
that is,

0 Qkﬁ Okn—3 Qkn=2
b= ﬁ;r)s, d:E—(n—_‘,‘)Q, e TZEWO’ t:zgr_,) @,

Q0
and therefore = 73— 4*.)

*
From these equations %—%;:Qz, that is = ,%, as it should be; so that Q signifying as

above, the required condition will be satisfied if only g:m{{;ﬁ%*; or substituting for

4, B their values, if only ’
(P24 2PQua? QP?) ¥ = QIC-1(P* - 2PQ+ Q%),

where cach side is a function of #? of the order %(n—1), or the number of terms is
3(n+1), the several coefficients being obviously homogeneous quadric functions of the
$(n+1) coefficients of P, Q. We have thus {(n+1) equations, each of the form
U=QV, where U, V are given quadric functions of the coefficients of P, Q, say of the
3(n+1) coefficients «, £, 7, 8, &c., and where Q is indeterminate.

6. We may from the 3(n+1) equations eliminate the 3(n—1) ratios «:p:y..., thus
obtaining an equation in Q (involving of course the parameter %) which is the Q&-mo-
dular equation above referred to; and then (2 denoting any root of this equation, the
4(n+1) equations give a single value for the set of ratios «:B:%:95..., so that the ratio
of the functions P, Q is determined, and consequently the value of y as given by the
equation

1—y (1—2)(P—Qx)? 2(P2+2PQ + Q%2?)
1+y— (1+2)(P+Qz)® O I~ PPr 2P+ Q%

The entire problem thus depends on the solution of the system of 1(n-1) equations,

(P2 2PQa? -+ Q22?)*=QI~"(P*+2PQ+ Q°?).

The Qk-Modular Equations, n=3, 5, 7, 11.—Axticle No. 7.

7. For convenience of reference, and to fix the ideas, I give these results, calculated,
as above explained, from the standard or ww-forms.
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7 1
+1 =0
—4
46
—4
+1
—4 +8 —4
BB OR EO1
+ 1 =0
16 410
+15
—20
+15
+10 —16
+1
—16 +32 ~16
mow BB R o1
+ 1
—64 | |+ 56
—112 +140
—112 + 56
+ 70
+ 56 —112
'+140 —11¢2
| + 56 —64
I
—64 —112 0 +352 0 —112 —64

n=3

Q=1, we have —4(k—1)*=0

Q=1, we have ——16(1&2—1)2:0

=0 n=17

Q=1, we have

—16(%— 1)2(4K* + 3k+1)(A +3h-+4)=0
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n=11.
A B i kK K P k P k2 b e

+ 1 » + 1
--1024 + 1408 — 396 — 12
— 5632 + 4400 + 1298 + 66
—16192 +16368 — 396 —220
—18656 419151 +495
—16016 — 1144 +16368 —792
+ 4400 — 7876 . + 4400 +924
+16368 — 1144 —16016 —792
+19151 —18656 a +495
— 396 416386 —16192 —220
+ 1298 + 4400 —5632 + 66
— 396 + 1408 —1024 | — 12
+ 1 | + 1

—32208 —18656 — 1936 — 7876 — 1936 —18656 —32208

+ 1408 -+ 8800 432736 40900 -+32736 + 8800 -+ 1408
—1024  —5632 —30800 — 9856 +30800 +33024 30800 — 9856 —30800 —5632 —1024 +94624

Equation-systems for the cases n=3, 5, 7, 9, 11.—Article Nos. 8 to 10.

8. m=3, cubic transformation.

2
k=u*, Q=" (here and in the other cases).

P=ea, Q=8. The condition here is
ka4 (2034 62) = Q& { («*+ 20B3) + 3227},

and the system of equations thus is

n=>5, quintic transformation.

P=a-+tya2?, Q=0.

U

ke =032,
2034 3= Qk(a*+ 2a0),

and similarly in the other cases ; for these it will be enough to write down the equation-
systems.

Fa=0y",
2oy + 208+ = Q(20y +2py +7),
¥’ + 2By =Qk («*+2a3).
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n=", septic transformation.

P=«+ya®, Q=B+02"
Fou=Qp,

F(2uy+ 26+ B)= Qs+ 275+ 23),
7" +2By +2e0+265= Qk(20y + 2By +2ud+ %),
0*4 290 = Q% (>4 2¢f3).
n=9, enneadic transformation.

P=o+tya*teat, Q=402
ka?=Q¢,

{2y + 20+ 57) = X2y + 2043,
2ee+5°+ 200+ 23+ 230 =Q(20s + 2+ 290+ 2654 230),
Dy 2y 237 = QA 2y + 20+ 2B+ B,
- 20e= Q% (&> 42 3).
n=11, endecadic transformation.
P=a+ya®+eat, Q=p02*+ &a*.
o =087
k3(2ay+2fx6+f32)—Q(ez—l-ZeZ—l-QBg)
k(2057 42004298 4-260) = Q(2ys + 2 v& 265 +2B540°),
e 20 295k 268 2B+ 3= Q2o+ 205+ 293 + 268+ ),
64278+ 2+ 20 = QI 2oy + 20D+ 2B+ B),
21 = QI (a2 + 20,

and so on.
9. It will be noticed that if the coefficients of P4-Qua taken in order are

e P....p 0
then in every case the first and last equations are
k0= Qg
200 +06>= 765“<’l”)(a2—|—2a,(3)
Putting in the first of these k=, Q.._-— the equ'ttlon becomes

ue? =1%",

where each side is a perfect square; and in extracting the square root we may without
loss of generality take the roots positive, and write #"¢=vo.

This speciality, although it renders it proper to employ ultimately », v in place of
k, Q, produces really no depression of order (viz. the Q%-form of the modular equation is
found to be of the same order in Q that the standard or wv-form isin ), and is in
another point of view a disadvantage, as destroying the uniformity of the several equa-
tions: in the discussion of order I consequently retain Q, 2. Ultimately these are to
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be replaced by %, v; the change in the equation-systems is so easily made that it is not
necessary here to write them down in the new form in %, v.

10. The case =0 has to be considered in the discussion of order, but we have thus
only solutions which are to be rejected ; in the proper solutions « is not =0, and it may
therefore for convenience be taken tobe =1. We have then s=u"+wv. Thelast equation
becomes therefore

n n 2
= (25—[— o) =1+ 28);
or recollecting that  is connected with the multiplier M by the relation ﬁ:l-l—Zﬁ,
that is,
28 =$ -1,

and substituting for 1420 its value, the equation becomes

1 4
2o=0'u""* (M -—%) ;
that is, the first and last coefficients are 1, %n, and the second and penultimate coeffi-

cients are each expressed in terms of v, M. The cases =3, n=>5 are so far peculiar,
that the only coefficients are «, 3, or «, 3, ¥; in the next case #=717, the only coefficients
are «, 3, 7, 9, and we have in this case all the coefficients expressed as above.

The Qk-form—Order of the Systems.—Axrticle Nos. 11 to 22.

11. In the general case, » an odd number, we have Q and %(n-1) coefficients con-
nected by a system of 4(n+1) equations of the form

U Vv
Q:’W:v,: “ ey

where U, V, .. U, V', ... are given quadric functions of the coefficients. Omitting the

(2=), there remains a system of (n—1) equations of the form %J',:%’,z .. Or say
(U, V, W,..)=0,
RS

which determine the ratios e : 3 : ¢ ... of the coefficients; and to each set of ratios
there corresponds a single value of Q. The order of the system, or number of sets of
ratios, is =g(n+1).2:", =(n41).2¥*%; and this is consequently the number of
values of (2, or order of the equation for the determination of Q; viz. but for reduction
the order in Q of the QF-modular equation would be =(n+1).2:"-®, In the case
n=3, this is =4, which is right, but for any larger value of » the order is far too high ;
in fact, assuming (as the case is) that the order is equal to the order in v of the uw-form,
the order should for a prime value of % be =n-1, and for a composite value not con-
taining any square factor be = the sum of the divisors of n. I do not attempt a general
investigation, but confine myself to showing in what manner the reductions arise.
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12. T will first consider the cubic transformation; here, writing for convenience
%:0, the equations give

Tk 1 o |
S = that is, BR(042)—(20+1)=0,

and
kr=Q;

the equation in 4 gives (£°%0*—1)*—46°(4*¢"—1)*=0, and we have thence

, E(QP—1)—4Q(kQ—1)*=0,
that is
EQt— 412652 —4Q 4+ k=0,

the modular equation ; and then £%*—1+4-24(k**—1)=0, thatis, Q*—1+24(4Q—1)=0,
2 . .
or 20= —%2711, which is = -2—5, say we have a=0Q’—1, f=2(1—%Q); consequently

-y l1—z {02—1+2(kﬂ—1)w}2

14y~ 142 (Q2—1—2(kQ—1)z(’
1 o®+28 6+2 O*—4k0Q+3
A=Q%, and M= a2 ﬁ: =01

which completes the theory. »

13. Reproducing for this case the general theory, it appears & priori that Q is deter-
mined by a quartic equation; in fact from the original equations eliminating £, we
have an equation

UI’ VI
where U, U', V, V' are quartic functions of &, 3; that is the ratio «:# has four values,
and to each of these there corresponds a single value of Q; viz. Q is determined by a
quartic equation.

14. Considering next the case =39, the quintic transformation ; the elimination of Q
gives the equations

B

where U, U', &c. are all quadric functions of «, 3, y. We have thence 44 —2-2, =12
sets of values of a:f3:y; viz. considering e, 3, y as coordinates in plano, the curves
UV -U'V=0, UW'—U'W =0 are quartic curves intersecting in 16 points; but among
these are included the four points U=0, U'=0 (in fact the point a=0, y=0 four
times), which are not points of the curve VW' —V'W=0; there remain therefore 16 —4,
=12 intersections (agreeing with the general value (n+1).2:#"%). Hence { is in the
first instance determined by an equation of the order 12; but the proper order being =6,
there must be a factor of the order 6 to be rejected. To explain this and determine the
factor, observe that the equations in question are

Eo?(2ay+ 2By +£*) — 9?20y + 28 4 %) =0,

Ea*(a+2B) — ¢y +28) =0;
MDCCCLXXIV. 3 H
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the first of these has at the point «=0, y=0 a double point, the second a triple point;
or there are at the point in question 6 intersections; but 4 of these are the points which
give the foregoing reduction 16 —4=12; we have thus the point =0, y=0, counting
twice among the twelve points. Writing in the two equations p=0, the equations
become Foly—ay*=0, F'a*—y*=0, viz. these will be satisfied if £%»*—?=0, that is, the
curves pass through each of the two points (8=0, y=%a), and these values satisfy
(as in fact they should) the third equation,

E(20y + 20+ ela+28) — o (y+28)(2ey+2B+£)=0;

it is moreover easily shown that the three curves have at each of the points in question
a common tangent; viz. taking A, B, C as current coordinates, the tangent at the point
(a, B, ) of the second curve has for its equation

A (26 4 3B) I + B(k'e —*) — C(29° + 8y°8) =0 ;.
and for 3=0, y=1Z%e this becomes 2kA+B(kF1)F2C=0, viz. this is the line from
the point (3=0, y=-%w) to the point (1, —2, 1). And similarly for the other two
curves we find the same equation for the tangent. ‘

Hence among the 12 points are included the point (y=0, «=0) twice, and the points
(B=0, y=+k«) each twice: we have thus a reduction =6.

15. Writing in the equations ¢y=0, =0, the first and third are satisfied identically,
and the second becomes 3*=?, that is the equations give Q =1; writing 8=0, they
become

BPa*=Qy% ay=Quy, =0k,

viz. putting herein y*==F%%’, the equations again give Q=1; hence the factor of the
order 6 is (2—1)%, and the equation of the twelfth order for the determination of Q is

(@—=1){(Q, 1)} =0,
where (Q, 1)°=0 is the Q4-modular equation above written down.

16. Reverting to the equation

1—y__(1—a) (P—Qu)®

1+y— (1+2)(P+Qa)?
it is to be observed that for «=0, y=0, that is P=0, this becomes simply y=2x, which
is the transformation of the order1; the corresponding value of the modulus A is A=#,
and the equation A=Q°% then gives Q*=1, which is replaced by Q—1=0.

If in the same equation we write 3=0, that is Q=0, then (without any use of the
equation y*=#°") we have y=u, the transformation of the order 1; but although this
is so, the fundamental equation

(P*4+-2PQa*+Q2*)* = QP2+ 2PQ+ Q%?),
which, putting therein Q=0, becomes (P*)*=QF°P*; that is (F*2%x+y)*=Qk*(w+ya®)
is not satisfied by the single relation Q—1=0, but necessitates the further relation
72:k2“2.
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The thing to be observed is that the extraneous factor (2—1)¢, equated to zero, gives
for Q the value Q=1 corresponding to the transformation y=« of the order 1.

17. Considering next n="7, the septic transformation; we have here between «, 8, ¥, 0
a fourfold relation of the form

( U, v, W, Z )=0,

| vV, w, z |
where, as before, U, U', &c. are quadric functions, and the number of solutions is here
8.2% =32; to each of these corresponds a single value of Q, or Q is in the first
instance determined by an equation of the order 82. But the order of the modular
equation is =8; or representing this by {(Q, 1)*} =0, the equation must be

(2, 1{(Q, 1)*}=0,
viz. there must be a special factor of the order 24.

18. One way of satisfying the equations is to write therein «=0, 3=0; the equations
thus become

kB2:Q'}’2a
ontting g 7T OHBE);
r putting B, y=d/, B,

].,/.“Isa:QBlz,

612 + 20&’6, — Q]C(ZOL’B'+05'2),
which (with ', 8 instead of «, B) are the very equations which belong to the cubic
transformation ; hence a factor is {(Q, 1)*.
Observe that for the values in question =0, =0, P=pg"2*, Q=¢/,
(PiQx)2=x_2(uV:l:le)2, :xﬂ(Plj:Q'lx)% if PI=“’, QI__:BI,

and therefore

1+y— 14+2\P'+Qz)°
which is the formula for a cubic transformation.
19. The equations may also be satisfied by writing therein y=£%w, 3=kB3; in fact

substituting these values, they become
Fol=QkR?
2% + k(208 + B*) = Qo>+ 202)+ 2Q4P%,
B 2k(B* 4 208) =2Qk* (o + 2e8) + QL%
B (P4 208) = Qo+ 2ap) ;
the first and last of these are

1—y 1 -—.z’(P’-—Q’x‘)‘*’

ko> =Qp?,
£+ 203 =Qk( o>+ 2a3),
which being satisfied the second and third equations are satisfied identically; and these

are the formule for a cubic transformation ; that is, we again have the factor {(Q, 1)*}.
3uH2
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Observe that for the values in question y=Zk«, d=FkB, we have P=a(1l+k2?),
Q=p(1+4%2?); so that, writing P'=a, Q'=p, we have for y the value
1—y_(1—2)(P'—Q'z)*
1+y~ (1+2)(P'+Qz)?’

which is the formula for a cubic transformation.

20. It is important to notice that we cannot by writing «=0 or =0 reduce the
transformation to a quintic one; in fact the equation 4*«’=Q3* shows that if either of
these equations is satisfied the other is also satisfied; and we have then the foregoing
case «=0, 8=0, giving not a quintic but a cubic transformation.

And for the same reason we cannot by writing «=0, 3=0, y=0 or =0, y=0, =0
reduce the transformation to the order 1. There is thus no factor Q—1.

21. As regards the non-existence of the factor Q—1, I further verify this by writing
in the equations =1 ; they thus become

- BPot=0",
k(2074208 +8%)=7"+295+265,
9+ 2By + 200+ 2068 =20y 4 2By +2ed 4 3%),
¥ 29 =H(a 4 20p),
which it is to be shown cannot be satisfied in general, but only for certain values of %.
Reducing the last equation, this is yd=~%, which, combined with the first, gives

ay=[3%; and if for convenience we assume «=1, and write also 6= ++/% (that is k=62,
then the values of a, 3, y, 0 are =1, B=9872, y=1y, 0=¢°; which values, substituted
in the second and third equations, give two equations in y, §; and from these, eliminating
v, we obtain an equation for the determination of 4, that is of 4. In fact the second
equation gives

P2y 420872+ 070) =+ 2080+ 2 ;
or, dividing by ¥ and reducing,

y(1—0)=26(6*—1)(¢*—0+1), that is

y(1+6*)=—26°(6*—0+1),
or, as this may also be written,

(y+8)(A+6)=—6(@6—1Y,
that is )
_03 —1 2
(r+="J07L

Moreover the third equation gives
P 2203 200+ Dy = 0% 2y + 29205+ 26 + 2070),

P (0 =200+ 20—1)—2(y+#)0(¢*—1)=0;
or dividing by #—1, it is

that is,

PP =20(y+0);
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whence also

L =
r=FEr1

Also

4000 —0+1)=*(0*41)?,
wherefore

2(6P—041)*=—4(0*+1) or 2(6>—d+1)*44(6°+1)=0,

or

4(6°+1)*4-2(62—06+1)=0,
that is

20— 36° 4 66— 304-2=0,
or finally

(26°—06+1)(6>—042)=0.

We have thus (26°+41)*=6°, that is 44'4-30*+4+1=0 or 4%*+43k+1=0, or else

(6°+42)*=¢, that is §*+36°44=0 or 4’4+ 3k+4+4=0; viz. the equation in % is
(4%°+ 3k+1)(k*+ 3k +4)=0,
these being in fact the values of £ given by the modular equation on putting therein Q=1.

The equation of the order 32 thus contains the factor {(Q, 1)*} at least twice, and it
does not contain either the factor 2—1, or the factor {(L, 1)°} belonging to the quintic
transformation; it may be conjectured that the factor {(£, 1)*} presents itself six times,
and that the form is

{(Q, 1)3%(Q, 1)=0;
but I am not able to verify this, and I do not pursue the discussion further.

22. The foregoing considerations show the grounds of the difficulty of the purely alge-
braical solution of the problem; the required results, for instance the modular equation,
are obtained not in the simple form, but accompanied with special factors of high order.
The transcendental theory affords the means of obtaining the results in the proper form
without special factors; and I proceed to develop the theory, reproducing the known
results as to the modular and multiplier equations, and extending it to the determination
of the transformation-coefficients &, 3 . . .

The Modular Equation.—Article Nos. 23 to 28.
K/
23. Writing, asusual, g=¢ ¥, we have u, a given function of ¢, viz.

= 1+¢% 1+¢414+45..
— %
u=~/2q 1+g.1+¢%.14¢°..

=20 (1—q+2¢°—3¢° +4¢*—6¢°+9¢°— 12¢"+ . . .)
=+/2¢f(g) suppose;
and this being so, the several values of v and of the other quantities in question are all
- given in terms of g. A
The case chiefly considered is that of » an odd prime; and unless the contrary is

stated it is assumed that this is so. 'We have then n4-1 transformations corresponding
to the same number -1 of values of v; these may be distinguished as v,, v,, vy, .. .0,
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viz. writing e to denote an imaginary n-th root of unity, we have

v=(=)"* V260 o=V 2eg"Vif(eq"), w=v/ Q(“zgﬁ)y(“@ﬁ) &e.,
n= ~2A7)
(Observe (—) ® =+ for n=8p+1, — for n=8p+3.)

The occurrence of the fractional exponent  is, as will appear, a circumstance of great
8 ) )
importance ; and it will be convenient to introduce the term ¢ octicity,” viz. an expres-

sion of the form Q{F(g) (f=0, or a positive integer not exceeding 7, F(¢) a rational

function of ¢) may be said to be of the octicity f.
24. The modular equation is of course

(v—v))(v—2,)....(v—70,)=0;
v —Avt Bl — ... =0,

so that A=3p,, B=2u,v,, &c. In the development of these expressions, the terms having
a fractional exponent denominator » would disappear of themselves, as involving symme-

say this is

trically the several n-th roots of unity, and each coefficient would be of the form ggF(g),
F a rational and integral function of ¢. It is moreover easy to see that, for the several co-
efficients A, B, C, ¢ will denote the positive residue (mod. 8) of n, 2n, 3m, . . . respectively.

Hence assuming, as the fact is, that these coefficients are severally rational and integral
functions of ¢, it follows that the form is

auf +bus e cus 0 ...,
¢ having the foregoing values for the several coefficients respectively. And it being
known that the modular equation is as regards % of the order =n--1, there is a known
limit to the number of terms in the several coefficients respectively. "We have thus for
each coeflicient an identity of the form

A=auf4bus*e ...,
where A and » being each of them given in terms of ¢, the values of the numerical
coeflicients @, b, .. can be determined ; and we thus arrive at the modular equation.

25. It is in effect in this manner that the modular equations are calculated in
SonNkE’'S Memoir. Various relations of symmetry in regard to (u, v) and other known
properties of the modular equation are made use of in order to reduce the number of
the unknown coefficients to a minimum ; and (what in practice is obviously an important
simplification) instead of the coefficients Sv,, Svy,, &c., it is the sums of powers Sv,, Su? &c.
which are compared with their expressions in terms of %, in order to the determination of
the unknown numerical coefficients @, &.. The process is a laborious one (although
less so than perhaps might beforehand have been imagined), involving very high numbers;
it requires the development up to high powers of ¢, of the high powers of the before
mentioned function f{g¢); and SoHNEE gives a valuable Table, which I reproduce here;
adding to it the three columns which relate to @q.



411

OF ELLIPTIC FUNCTIONS.

0901+ 8 +l0 |93

9.8 — s1t|s+ s

szl + 0 0 |¥3

%69 — 0 0 |83

87 + 0 0 |23

ev6698 —| 38691 —| ¢68 — 0 0 |18

geOVL1+|Co¥81+| 028 + g +lo |03

_ BIPLIT—|9%06 —|8¢3 — 0 0 |61

92¢93L08¥E +| 0798508781 +| £07£9086F +| B8LF¥6S9T+| ¢5LF0S0C +| £80801E+| 980801¢ +| 8967 LS+ | €¥E€8L +|¥5¢9 +) 808 + ¥y +0 |8I
9S3/8S08C1—| 010981829 —| 3¥L%L0L83—| 94640388 —| 19€56%95—| 908¥.L¥L—| 0099081 —| ¥98%S€—| C6L1¢ —|¥0LY —| 99T — 8 +i0 L1
8682¢cL99 +| 020863382 ~+|996%08IT1T1+|3989960% +| 9FE099ST +| 1843507 +| 09001+ | 0¥3918+ | ¢L8ee +|8¥ee + el + ¥ + g+ 91
€62L39%8% —| 023060931 —|L31891¢ — | 36814461 —|09L€169 —|¥LL6S13—|86.€8¢ —|5G6631—|F6813 — |98 —|G0T — 0 0 |SI
9¥L0L3811 +|¢28311¥e +| 92020883 +|¥0448e6 +|0L.83%8 +|L2e6311+|c898a¢ + (8169, +| 89681 + 8%¥91 +|28 + 0 0 ¥t
98%0€8.% —| 06000833 —|8099S30T —|89€908% —| /363991 —| 9¥98L8 —|S&19L1 —|9LL¥y —|/.8L8 —|8CIT —|¥%9 — g +/0 |¢I
62299281 +|c9c1ee6  +|$z806eF +|veeye61 +|LL898L +|9¥L683 +|998¢6 | 16998 +|e¥¥e +|LLL +|0g + 0 0 |31
981031, —|096.69¢ —|6898381 —|&80FFP8 —|1L3239¢ —|¥P¥IF1 —| 0888F —|8BE¥L —|&1€E€ —|G88 —|88 ~— 0 0 |11
9841093 +|g9oveI®¥T  +|g€e608L +|s8sg9ce  +|¢giI91 +|Zl019 +|z08¥s +|o0¥8L +|LL6T +|9¥e +|68 + 8 +l0 |01
073116 —109981¢ —| 116188 —|800S%T —|¥EL69 —|92808 —|08331 —|081F —|GSIT —|988 —|%8 — vy +st+|6
390%0¢ +/6%9181 4+ L6801 | 69999 4168883 +|¥voer +|0z8¢ +|8918 +|L¢9 +|¥¥1 +|91 + ¥ +i0o |8
1£626 —10L309 —|¥1¥9¢ —1 36603 —|eavil —|¥8L8 —|%998 —|080T —|g98 —|06 —|@L —|¥0L—|0 0o |Z
9£€8% +|¢9/81 +| L6611 +|acgl 4+ LLBY +loges  +lcott  +|s1ie  +|¥61 +j¢¢ +6 +|zeet|o 0 {9
94 —|31¥¢ —|38L9¢ —100%3 —| 86%1 — |88 —|18¥ —1988 — 66 —lze —|9 —liggt—|8 +i0 |¢
F161 + 08%1 +19301 +|812% 4 e8¥% +| 60¢ 4+ e81 +|101  +|8% +is1  +i¥  +l9L +¥ +E+|¥
81¥ —l0gg —1 60y —1 361 —|0¥1 —|86 "—1¢9 —| 0¥ —1 33 —l01 =g —llag —0 0 |¢
L +1¢9 +¥g + | ¥¥ +|¢cg +1 13 +| 03 + ¥ +16 +le +lz +lst +v +i0 |8
11 =10t -6 -8 —Z —19 —ig -y —le -1 -1 =¥y —¥% +sHTI1
I I 1 I I 1 I 1 I I 1 I I I |0

—3 = — - — — 3 = =3 =] b= — = = .hmo
b bof bof bof b bf - RS bS  BS BS Y Bd B9 by P



PROFESSOR CAYLEY ON THE TRANSFORMATION

412

‘yno paddoap aaey jsnw arndy e jnq ‘@ANHOG UT OF 4

1

£96££69.£9¢9+ | $76591888¢8E+ | 08C0T3CC1EL I+ | 083699C1HS8+ | 06¥F69F7L80% + | 66196S€8L8T+ | 0112L98%38+ | 81

$002881€888% — | S8E6FF690F3T — | 83£98706869 — | ST908900¥EE — | 9LB1BLSLFIT — | 99LETEC18L — | 833E1697¢8— | LT

%81880LL108 + | SL¥EE¥6L9FF + | 601C11658%3 + | 9839568%.L6T+ | 10S11L98%9 + | Goab6F¥8LIS + | GLSVLPE6FI1+ | 91

8G1939¥1€L8 — | 9¥2e8.L8C9Cl — | 8890186848 — |LOTI6%0¥LY — |28806968%3 — |€ISSITT193T — |$90€81€19 — | ¢I

090209306 —+ |80.680¢3¢e + |%0L968190¢ -+ SLS961ST1L1 + [€6619¥686 + |8L£860.L8% — |000LS%C¥s + | #1

9930665883 — | 0308€02SLT — |FP19306801 — | 962291009 — |0¥80€998¢ — | 916189381 + |911L6¥¢6 — | ¢l

€18030688 + | 35699899¢  + | ¥9998%0%¢  + | 09L€L1€05 + | 138136411 -+ |$9682£99  + |39€9009¢ + | 31

98970198  — | 03€318691  — |¥06663L0T — |S0¥33399 — |¥LS6086E — |G€9EEBEE  — |8€9Tll8l — | 11

F3CeVLT6ST+ | L9LSFL60T + | 88€8SHVL + | 18206¢26% + 1 919.8¢3¢ + 199606905 + | 29996831 + | 003818. + ogvz6ey 4+ | 01
0020930% — |£L9L098% — | $8S15003 — | 0¥208.L¢1 — | $9911¢€6 — | 6¥€¥919 — | 363886¢ — | 16CY 123 — |3l¥68ST — | 6
099686 + | L¥0FS0L + | 8L¥¥809 + | $2619¢ + | 0Loggcs + | 0168l + | L¥86911 + | 1€189L + | 69806% + 8
0099813 — |LPILI9T — | 0198031 — 1008068 — | 8329¥%9 — | ¢9319¥ — | 888352 — | 160138 — 1 03LL%1 -1
0Lz68% +|01Le¥e + | €36993 + | 103203 + | 3o1gCI + | ¢L9g1l + 19¢628 + | c¥e6¢ + | yec1¥ +19
$3138 — 161699 — | 85ges — 1 08838% — | p818¢ — 1899¢& — | 8C¢6I — | 199%1 — | %9201 — ¢
¢99¢1 + | 9Ly1t + | 8226 + | 888. + | #¥%9 + | g03¢ + | 1e1¥ + | e9z¢ + 1 eaes +1¥
0961 — 0141 — | B8P — L3l — | 8801 — 1036 — 102 — 1 1€9 — 10388 —| e
083 + 1 603 + 1681 + | 6Lt + {3c1 + | egr + 611 + | %01 + | 06 +|8
03 — |61 — 81 A — 191 —le1 — ¥ — |81 — 181 -1
1 I 1 I I I I I I 0

= = = = = = = = = b jo
@cu.\- @2.\. @w?\. %2.\. m2.\. @2.\. %ﬁ.\. %mr\« @ﬂ.\‘ .ﬁ:m



OF ELLIPTIC FUNCTIONS. 413

26. I give from SoHNKE the series of modular equations, adding those for the com-
posite cases n=9 and n=185, as to which see the remarks which follow the Table.

vt v 1

‘ —1 n=43.

u® k +2

1 +1

]
]
NN
u |{—2
]

—1 =(v+1)*v-1).

o4 3

¢ +4

u? +5

1 k—l—l

1 44 45 0 -5 —4 —1 =(v+1)*(v—1).

n=7.

u | +28

u® — 56

ut l I +70
u? i k —56

] =

1| 41 0

1 —8 428 —56 +70 —56 +28 —8 41 =(v-1);

MDCCCLXXIV, 31
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n=11.
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12 !t o!® v° ?® o7 o8 v’ vt 3 v? ) 1
| 0 i
J —16 +8
l +16 +10
—16 —24
0 +15
+48
—84
l +48
+15 0
} —24 ~16
} +10 ’ +16
+8 | } | —16 B
I -8 42 —40 +15 +48 —84 +48 +15 —40 +26 — 8 +1 =(v—1)(v 1)
A T 'l ¥° v® o7 o5 ?° vt v® ?? v 1
0 i -1
+32 - 22
—44
+ 88 +22
(i} —165
+132
+44 —44
—132
+165 0
—22 — 88
+44
+ 22 ~32
+1 0
1 410 +44 4110 +165 4+132 0 —132 —165 —110 —44

—10 -1 =(v+1)i(v—1).
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ot B 1 M DR U 8 7 o° v° vt D S |
0 -1
‘+64 —52
0 —65
+208
0 —429
+520 +52
0 — 429
+208 —208
+ 429 0
—52 —520
+ 429 0
—208
+65 0
+ 52 ‘—— 64
+1 0 \

1 412465 +208 +429 +572 +429

0 —429 —572 —429 —208 —65 —12 —1 =(v+41Y {v—1).

312

415



PROFESSOR CAYLEY ON THE TRANSFORMATION

416

W(1—e(I—)=1+ 8— 0z+

‘g1=u

8+ 9z1— 891+ 961+ 089~ 6ez+ 2201+ 0Fa1— 095— 0281+ 09¢— 0¥EL— BL01+  6e8+ 0s9— 961+ s91tesi— st ozt 8— It
o T T R | : [
0 v 331 |v ; ‘ 0zl +| _Il A
; T | o+ |
; T T
968 — ?gmlg 0cor+
0561 — ; 4 008— 8885+
v28e— A _ * Somi _ 086+ 7 \
W%mwl ﬂ _ wom_m+ A w oﬁ+_
0 Tawml 60225+ * 0
_mm_l ; 0969 — 0918+ “
096— _ “ 0285~ ~ _ ovog+ _
ewwm|_ 7 4 _om_m+ 008 — ? ]
_ ] _omamuw _ * 0996+ q _ 0368~ ‘1I
008 — ‘ ‘ _ ‘ i _ ?m;i A 0883~ 4
o0v0s+ 0585~ 096— _
; 0918+ 0969 = wm_l_
0 A h 6035+ 02698 — 0
0z1+ ; 0918+ 0968 —
086+ _ orog+ Pesg—
mwwm+_ _ 008 — 0861~ 7
_ “o..si w * 0268 — 965 — v _
- “ wwmmi _ 0883 — ; (]
T e :
T T T e | :
L | Lo | LT 0 | 0
R G G ¥ 2 L @ 8% 6% [ P T a? st e [ R T )

M
e
L
m§
wS

m

6
o

"

e

yi"

o
i
gt

61



417

OF ELLIPTIC FUNCTIONS.

wll—®)= 1+ g1 —

ecr+ 918 — 0908+ 8998 — ¥9C81+ ¥ZBIE— 8cLeh+ 03esy— 8GLeF+ FE8IE— F9S8I+ 8998 — 090g+ 918 — €SI+ 81— 1
T 0 0 1+
| 9%— o | @ + ¥e —
0 &g — ) cas+ o
- zeot + | 8FHa—
L 0807 — 0F1L+
9687 + o voper— o
0807 — ¥¥9zt
- ze91+ 9cree—
LG — 0gorr+| - 0
28+ ¥916% — Lo+
0 020p¥+ aLe—=
9gree— ze91+
] 9Prga+ 080¥ —
_ 212 G 968y +
L or1L+ 080% —
- 85— ze91 +
l* ey + @ - . 0
I_ ¥e — a @l + 96—
1F| 0 ) 0
[ a P m& 3@ o 9% 1 mé P o E@ u—a\ et ﬂ@ mﬁ@ w—@ 1 a1t

et

st



PROFESSOR CAYLEY ON THE TRANSFORMATION

418

(1—=0)e(1+2)=

1— 81 — 3ST — 86, — L06&— &SLL— $OSSI— 9G2EE— ¥6ICE— 96191~ 0 9691+ verogt+ 998ez+ VoSS1+ 2gLL+ L063+ 86L + ST +81 + 1
0 * 0o . 1
gle— ﬁ 809 + ¥l —
ere — , ¥8¢% +
zere+ ‘ ree — P+
0 568 — 6989+
aLve— 0838 —
e¥e+ 88701+ ¥8¢z+
98693 — 0825+
3568+ argiet+ 0
809+ 89208~ vree+
88701 — 88O+
¥ree— 87£05+ 809—
0 s rdta 2068 —
0835 — ggeest
7865 — | 88701 — 2eVE—
0885+ aLve+ ,
6989— ggee + 0
I — yree + eve—
8¢z — aeve +
v+ 809 -- gis+
- 0 0
1 [ ua ma wa m..s wa 18 w.s na\ 3& :& s._b 35 3& 29 3& 5& 2& ,3: eu&

n

P

M



OF ELLIPTIC FUNCTIONS. 419

Various remarks arise on the Tables. Attending first to the cases » a prime
number ; the only terms of the order n+41 in v or u are v"*' +-4"*", viz. n= 38 or 5 (mod. 8)
the sign is —, but n=1 or 7 (mod. 8) the sign is +. And there is in every case a pair
of terms v"»" and vu, having coefficients equal in absolute magnitude, but of opposite
signs, or of the same sign, in the two cases respectively.

Each Table is symmetrical in regard to its two diagonals respectively, so that every
non-diagonal coefficient occurs (with or without reversal of sign) 4 times; viz. in the case
n=1or 7 (mod. 8) this is a perfect symmetry, without reversal of sign; but in the case
n==3 or 5 (mod. 8) it is, as regards the lines parallel to either diagonal, and in regard to
the other diagonal, alternately a perfect symmetry without reversal of sign and a skew
symmetry with reversal. Thus in the case n=19, the lines parallel to the dexter dia-
gonal are —1 (symmetrical), +114, —114 (skew), 0, —2584, —6859, —2684, 0 (sym-
metrical), and so on. The same relation of symmetry is seen in the composite cases
n=9 and n=15, both belonging to n=1 or 7, mod. 8.

If, as before, # is prime, then putting in the modular equation #=1, the equation in
the case n=1 or 7 (mod. 8) becomes (v—1)"*'=0, but in the case n=3 or 5 (mod. 8)
it becomes (v+1)"(v—1)=0.

27. In the case n a composite number not containing any square factor, then dividing
n in every possible way into two factors n=ab (including the divisions #.1 and 1.%),
and denoting by 8 an imaginary 4-th root of unity, a value of v is

a1 a
+/2Bg"Y f(BL);

so that the whole number of roots (or order of the modular equation) is =y, if » be the
sum of the divisors of n. Thus n=15, the values are

15 15 5 1 3 3 1 1 1
V2PAT?), =2 AT, =20 A v 207 P fg”)
1 , 3 R 5 R 15 roots;
and the order of the modular equation is =24. The modular equation might thus be
obtained as for a prime number; but it is easier to decompose % into its prime factors,
and consider the transformation as compounded of transformations of ‘these prime
orders. Thus =15, the transformation is compounded of a cubic and a quintic one.
If the v of the cubic transformation be denoted by 4, then we have
6 4 20°u° — 200 —u*=0;
and to each of the four values of § corresponds the six values of v belonging to the
quintic transformation given by
V0 40°0° + 5v*d® — 5vft — 4o —0°=0.
The equation in » is thus
(P40 =) .. — )b, . — (.. —5)=0,
where 4,, 4,, 0,, 0, are the roots of thé equation in 6, viz. we have
O 4 200 — 20w —u*=(0— 0,)(0— 6,)(I— 0,)(—4,) ;
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and it was in this way that the equation for the case #=15 was calculated. Observe
that writing w=1, we have (+1)(¢—1)=0, or say 0,=d,=d,——1, 4,=+1. The
equation in v thus becomes {(v—1)(v41)}*(v+1)*(v—1)=0, that is (v—1)(v+41)*=0.

28. The case where » has a square factor is a little different; thus #=9, the values are

_ 9 _ 13 3 _ 1t 1
V2 L(@), =24 *f8) v 20 A D),
1,3 , 9 , Toots ;
but here » being an imaginary cube root of unity, the second term denotes the three
values,
L — 1 — L
V26 1), N 2q0)(@0), /AP A1),

the first of which is =w, and is to be rejected ; there remain 14249, =12 roots, or
the equation is of the order 12.

Considering the equation as compounded of two cubic transformations, if the value of
v for the first of these be 4, then we have

O +26°u* —26u—u*=0;
and to each of the four values of 4 correspond the four values of v given by the equation
v* 4 20°0° — 200 — ¢*=0.
One of these values is however v=—u, since the wvf-equation is satisfied on writing
therein v=—wu; hence, writing
04 200° — 20u— uwt =(0— 0,)(0—0,)(0—4,)(6—4,),
we have an equation
(v 4 20°6— 200, — 8})(v* . . —6)(v*. . —B)(v* .. —4;)=0,

containing the factor (v+u)*, and which, divested hereof, gives the required modular
equation of the order 12, which was in fact obtained in this manner.

Observe that writing w=1 we have (§+41)(¢—1)=0, or say 4,=4,=d,=—1, 4,=1;
the modular equation then becomes

{(v—1)(v+1)}(v4+1)(v—1) =(v+1)*=0,
(v—1)"(v41)*=0.

that is

The Multiplier Equation.—Article No. 29.

29. The theory is in many respects analogous to that of the modular equation. To
each value of v there corresponds a single value of M; hence M, or what is the same

thing 37, is determined by an equation of the same order as v, viz. n being prime, the

order is =n-1. The last term of the equation is constant, and the other coefficients
are rational and integral functions of «°, of a degree not exceeding 4(n—1); and not
only so, but they are, n=1 (mod. 4), rational and integral functions of w*(1—u*), and
n=3 (mod. 4), alternately of this form, and of the same form multiplied by the factor
(1—2u®).
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The values are in fact given as transcendental functions of ¢; viz. denoting by
M,, M,, M,..., M, the values corresponding to ®,, v,, vy, . .. v, respectively, and writing

¢() (1+9)(1+¢)(1+%) ... A=¢*)(1—¢")(1—¢) . ..
(1=-)(1—=¢*)(1—¢%) ... A+ +g)(1+¢°) ...

=142¢+42¢*+2¢°+2¢"+ . . .,

then we have

__(=)7¢%(q)
W=5T oy
M = ¢ (Q)l » .. (2 an imaginary nth root of unity)
#*(2q") |
M=
#*(¢")

Hence, the form of the equation being known, the values of the numerical coefficients
may be calculated ; and it was in this way that JouBERT obtained the following results.
I have in some cases changed the sign of JOUBERT'S multiplier, so that in every case the
value corresponding to #=0 shall be M=1.

The equations are :—

n=3, 1\“111‘7& w==0, this is
1 3
+pse O (1\11—1> (514—4-3):0.
+ope- —6 u=1, it is
1 , : 3
+ore S(1—20) (“nlz+1) (ﬁ_3>:0.
—3=0.
n=>~, f}f"‘ =0 or 1, this is
ppe =10 (514——1)5(31—4——5) =0.
1
Sty +35
1
4555+ —60
1
+i- +55
o - —264+256u(1—u)

+5=0.

MDCCCLXXIV. 3K
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1
%:7, Ms

1
apvik 0
1
+ e - —28
ta - +112(1—20%)
1
+3iE- —210
Fyrs - +224(1—2u%)
Fyre - —140—21 . 256u(1 — )

g - (48204801 —w?)}(1—2u%)
47=0.

-

.0

+
=

. —66

_\H

+
=

+

. +440(1—2u%)

. —1485

+
[~ &= &=

. +3168(1—2u°)

+
=

+
=
ol

. —4620—3.11% 256u%(1—u®)

+
=~

{HAT52411 . 4096w (1 — )} (1 — 2u%)

355 —3465—3.7.11. 512u(1—w)

w=0, this is

et e

u=1, it is

(e v

uw=0, thisis

1 . 11 1 =
() ()=
w=1, it is .

() ()=

s - {+1760411. 83 20480%(1— )} (1—20%)

g - —594—9.11. 87, 256u5(1—uf)— 3. 11. 131072 {us(1—u?)}*

+ g7 1120+ 15 . 4096us(1 —ut) — 524288 {uf(1—u*)}2} (1 — 20%)

—11=0.
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The Multiplier as a rational function of u, v.—Article Nos. 30 to 36.

30. The multiplier M, as having a single value corresponding to each value of v, is
necessarily a rational function of , v; and such an expression of M can, as remarked by
KoN16GSBERGER, be deduced from the multiplier equation by means of JacoBr's theorem,

1A(1—2%) dk .
2\ T/
M= nk(1—k%) drn’

viz. substituting for %, A their values «°, +°, and obseriring that if the modular equation
be F(u, v)=0, then the value of % is =—F(v)+F'(u), this is

1 (1 —o%)F
n (1—uf)ul’y’

M= —

and then in the multiplier equation separating the terms which contain the odd and
even powers, and writing it in the form ®(M?)4M¥(M?)=0, this equation, substituting
therein for M* its value, gives the value of M rationally.

The rational expression of M in terms of «, v is of course mdetermmate, since its form
may be modified in any manner by means of the equation F(u, v)=0; andin the expres-
sion obtained as above, the orders of the numerator and denominator are far too high.
A different form may be obtained as follows: for greater convenience I seek for the value

not of M but of :&
31. Denoting, as above, by M,, M,, . M the values which correspond to vo, Vpy o oo V)

1 v 1 v
Mo-[-Ml +— &c., we have S — S &c., all of

M’
them expressible as determinate functions of u; and we have moreover the theorem that
each of theseis arational and integral function of w: we have thus the series of equations

respecti§e1y, and writing Sﬁ:

Sy=A, Sy=B,...,Sv=H,

M
where A, B, ... H are rational and integral functions of . These give linearly the

different values of ﬁ; we have in fact

(vo—2,) ... (V—7,) M%:H—GSv1+FSv,v2 R . UX )
where Sv,, Sv,v,, &c. denote the combinations formed with the rootsv,, v,, . .. v, (these can
be expressed in terms of the single root v,); and we have also (v,—2,)...(v,—v,)=F(v,):
the resulting equation is consequently F'v, 1\-1]; =R(@, %), R a determinate rational and

integral function of (v,v,); but as the same formula exists for each root of the mod‘ula.r
equation, we may herein write M, v in place of M,, v,; and the formula thus is

Y. KI/I=R(u,'fv),
3 K2
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. . . 1 . . .
viz. we thus obtain the required value of g7 as a rational fraction, the denominator

being the determinate function ¥'v, and the numerator being, as is easy to see, a deter-
minate function of the order » as regards v.

32. The method is applicable when M is only known by its expression in terms of ¢;
but if we know for M an expression in terms of v, #, then the method transforms this
into a standard form as above; and by way of illustration I will consider the case n=3,
where the modular equation is

vt 4 20%u® — 2o —ut=0, |

and where a known expression of M is -1\1/—I=1—|—27'ﬁ. Here writing S_,, S(=4), S, &c.

to denote the sum of the powers —1, 0, 1, &c. of the roots of the equation, we have

S &:So+2u3s_l, =0 , as appears from the values presently given,
S y=Si+208, , =6u,

v? s
S3i=5+2¢%S, , =0 ,

s R
SM=83+2@0 S, , =6u;

and observing that v, being ultimately replaced by v, we have
Sv,=Sv,—v,  Svw,=Svw, —vSv,+ 0% 1,0,0,=Sv,,0,— SV, + 1,50, —°,

that is
Sv,=—2u* —v, Svw,=20’v+v*, v,U0;=2u—2u**—7°,

we have
Fo.y= (S,42uS,)
(204084208,
+(2uPv4-0°)(8S, 4 2u°S,)
+ (—2u+ 20** 4+ 0*)(S, 4 24°S _,),

viz. this is
2(20° + 3v*u’ —u) Kli = v¥(S,42u’S_))
F07(S, 4 4u*S,4-4u’S_,)
4o (S, + 4u®S, +4u°S,)

4+ (S;+4uS,+ 4u’S, — 2uS,—4u'S_ ).
But we have
2

S_,=—=, S,=4, S,=—2u% S,=4u’, S;=6u—8u’;
w

and the equation thus is
203480 —u ~1~=3 v+ 2utv+1)u;
M
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. . Y . 1 . 3 .
to verify which observe that, substituting herein for 37 its value 1+ gvl, the equation
becomes

(20°+ 8v*uw® — u)(v+ 2u°) — Svu(v*u* 4 2u'v41)=0;
that is,
20t 4 4v*u® — dou—2u* =0, as it should do.
33. Any expression whatever of M in terms of u, v is in fact one of a system of four
expressions; viz. we may simultaneously change

that is, signs are
0 v 1—31 n=1 n=3 n=5H n="7(mod.8)
into v, (=)Fu (=)7 aM |+ 4+ + |+ — — |+ — —| + + —
) 1 1 v?
or = e . Ml F+F++++ ]+ ++ ]+ + +
1 w1 n-t
or (=) e (S)TaaMy 4+ 4+ + |+ - =+ =+ |+ + —

3
Thus n=3, starting from —IM:1+2-Z~, we have

1 _ 4,248 123 vt 2 ulonr y 2u,
=1t —M=1-20 ay=ltm —p3M=1-3%;

and of course if from any two of these we eliminate M, we have either an identity or
the modular equation; thus we have the modular equation under the six different forms:

1, 2) (v429°)(u—20*) + Buv=0,

(1, 8) V(v 4 29°) —u(v’+20) =0,

(1, 4) (v4+24°)(v* — 2u)+ 3u* =0,

(2, 3) (u—2v°)(w’* 42v)+3v* =0,

(2,4)  v(v*—2u)—u(u—2v°) =0,

(3, 4) (¥ +20)(v*—2u) + Suv® =0.

. 1 v—ud .
34. Next n=>5. Here, starting from ) g p—— the changes give
Rl | PR A A Chomt A Y O iy
M~ o(1—u?) Tu(l4e) Mt (l—w) T oA (1 +udv)’

viz. the third and fourth forms agree with the first and second forms respectively; that
is, there are only two independent forms, and the elimination of M from these gives

Suv(1—ur®)(14 wv) — (v—u®)(u-+v°)=0,
which is a form of the modular equation.

_ _ _ 2,0
35. In the case n=", starting from 1 _ —ru(l—w) (1—uvtod
=] M u—1v7

No. 43), the forms are

) (as to this see post,
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1 —7u(l—uw) (1 —uv+u ‘)

N P B Y
—TM= —7v(1 —w) (1 —uv +u%9) (@)
= P e e e e e

2t =T (1 —w) (1 —uw +u%?)
P Vi Bu—r) B €))

ot —7ut (1 —w) (1 —uw +2u%?) »
7M__ o) N 9

so that here again the third and fourth forms are identical with the second and third
forms respectively ; there are thus only two forms, and the elimination of M gives

(u—2")(v—u")+ 7ub(1 —uw)*(1 —ﬁv+ )=

which is a form of the modular equation.
36. If in the foregoing equation,

1
Fv.35=R(u, v),
1. : .
we make the change w, v, 3 into v, +u, +nM, it becomes

+Fu.aM=R(v, +u);
and combining these equations, we have

Fu_ R(v, +u) .

+nM?. Fo™ R(u,v) ’

or substituting herein the foregoing value

. 1 (1 -3k
this becomes
_v(l1-*) R, +u) ~+for n=3 or 6 (mod. 8),
Tu(l—u)) ™ Riy, ) —for n=1 or 7 (mod. 8),

which must agree with the modulal equation: thus in the last-mentioned case n=3,
where we have

1P o= 3(s%ut 4+ 2w+ 1)y,

or say ,
R(u, v)= (vw*+2uv41)u,
and therefore
R(w, —u)= (vu*—=2w’+1)v;
the equation is
v(1—v%) _ (0"uP—2uwP41)0
+ w(l—ud) ™ (0% + 2uSv+ 1)’

which is right; for J ACOBI, p- 82, the modular equation, gives
1—v*=1—w*)(vv’+20v+1), 1—v®=(1—v**)(v*s*—2uv*+1).
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Observe that the general equation
—v(1—=2%) R(v, +u)

u(l1—u¥) ™ R(u, v)

no longer contains the functions ¥'v, F'u, which enter into JAcoBI'S expression of M-

Theorem in connexion with the multiplication of Elliptic Functions.
Article Nos. 37 to 40.

37. The theory of multiplication gives an important theorem in regard to trans-
formation. Starting with the nthic transformation,

1=y 1—2 (a—Br+y2®—...\? _l—z P—Qx\?2
14y 1+@\a+Br+ys®+...) > T 14+2\P+Qx)

we may form a like transformation,

1—z 1=y /(d—By+o/s°—. . \2 1—y P'—Qly\?

1427 14y \e'+fz+o9'y*+...) > T 14y <P’+Q’y> >
such that the combination of the two gives,a multiplication, viz. for the relation
between y, 2, deriving w from v as v from #, we have w=w; and instead of M we have

M, =4 n_l_; that is, we have

dz _ Mdy
V1= 1—dba® V1—y? 1—o%y®
dy M'd

V1—92, 1'—'-1;8y2= V1= 1=
and thence :
1
dx _ i_ﬁ dz .
V1—a2 1—u%2" V1—22.1—u2’

or writing £=sn 4, we have z= +snnd; + ishere (—)L;l, viz. it is =— for n=3 or 7
(mod. 8), and =+ for n=1 or 5 (mod. 8).
Now in part effecting the substitution, we have

1—z 1—z (P—Qa\* (P'—Qy\?
1427 14+2\P+Qz/) " \I"+Qy )’
where y denotes its value in terms of 2.

And from the theory of elliptic functions, replacing snnd, snd by their values +z, 2,
we have an equation

1—z 11—z (A—Bz+Ca®—...\?2
1427 142 \A+Ba+Ca*+...) ?

where A—Bx+4Ca®—..., A4+Bz-+Cs*+... are given functions each of the order
L(n*—1); viz. the coeficients are given functions of %, or, what is the same thing, of u*.
Comparing the two results, we see that in the nthic transformation the sought-for
function, «-+Bx+4ya*+... of the order 3(n—1), is a factor of a given function

A+Bz+Ca*+. .. of the order 4(n*—1).
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38. Considering the modular equation as known, then by what precedes we have
a+Prtyr’t. .. =w {1—}—5— z... +%7~L x%(”“‘)} ;
that is, the given function A+4Br4Ca®+ ... has a factor 1+§x—l—. . .-[-%naﬁ(”“), of

which one (the last) coefﬁcient% is known, and we are hence able theoretically to deter-

mine all the other coefficients rationally in terms of u,v; that is, the modular equation
being known, we can theoretically complete the solution of the transformation problem.
I do not, however, see the way to obtaining a convenient solution in this manner.

39. The formula in question for n=3 is

1+sn3§ 1—snf 1 + 2sn § —2/%n%) — k2sn%)\ 2
1—sn30 14+snd\1—2snf+2k%n3G—k%sn%/ °

which, putting therein #=sn 4, z=—sn 34, and replacing £ by u‘, may be written

1+ 2(+)=(142)(1— 2042082 —usat)i( ),
where the signs (<) indicate denominators which are obtained from the numerators by
changing the signs of z, & respectively.

3
The theorem in regard to n=3, thus is, 1+% z is a factor of 1—2x 4 2ua® —us*;

viz. writing in the last-mentioned function 2= -—Z%, we ought to have

8 ot

0=1+2 5222,
that is
wt - 200 — 200 —0* =0,
which is in fact the modular equation.
40. And so for n=5 if x=snf, z=sn b4, and for n="7 if x=snf, 2=—sn 74, the
formule are i —

n==~, n=",

1+z=01+2){ 1 14+z=14+2){ 1
(+) + 2 x (+) — 4 x
— 4 2’ — 4 %
—10u® a® + 4(2+47v°) a
+ bu® ot — 14w xt
+ du*(8 4 2u®)a’ —28u(3 4 2u°) a’
+4uf(1— uf)ab +28uf(4+ u) "
—4u®(2+ Suf)a’ + 4u®( 164 61w+ Su')a’
— bu® a2 — o’ (144430504 16u')s®

+10u"  a° — 8uf( 4+ 25w+ 16w)e
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+ 4u24 xlO
— 2u* gV
u24 wl2}2_:__
Term in { } has factor
5
1+ g$+% a*;

u=1, term in { } is

=(14a)y(1—a)-

+ 8w ( 84 6Tu+ 46w’z

+56u'%(2 + %) a
— 4w’ 56+161u*+ S6u'%)a™
+66u*(142u® )a®

+ 8Su( 46+ 5Tu'+ Su')a'
— 8u( 164+ 25w+ 4w
—  u*( 164+3056u° 4 1444')2'°
+ 4uw*( 84 5luf+4 16u')a

+28v*( 14 4u) a'
—28u®( 24 3w 2"
—14u* | a%
+ 4w (7 +2u°) ™
— 4u* a2
— 4y as
K s

| (+)

Term in { ,} has factor
1+§x+gx2—l—z~gx3;
w=1, term in { } is (1 +2)°(1—a).

The transformations n=3, 5, T, 11.—Axticle Nos. 41 to 51.

41. The cubic transformation, n=3.

I reproduce the results already obtained; since there are only two coefficients e, j3,

these are also the last but one and last coefficient ¢, 0.

g, o, we have

26:%——1,

Hence, from the values of «, (3,

L 1 f1 h 1_2u ut —1 2us . . h dular .
the two values of y; are thus ;=234 3 =14, giving the modular equation

v 4 20°0° — 200 —u*=0;

and we then have

1—y

MDCCCLXXIV.
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42. The quintic transformation, n=5.
Here there are the three coefficients «, @3, y, or 3, ¥ are the last but one and last
coefficients g, o; we have

u4
a=1, 2= u( M~ )
1 ud
2B=M'—'1, Q’:;-
Comparing the two values of 3; we have 1\17[——0 (71’ us) , and then

. ulwt—ut) WP
w=L =5y 1=
so that only the modular equation remains to be determined.

The unused equation is

2
2ay+ 208+ =5 (2007 + 2By +57),
which, putting therein =1, may be written
(27 +P)(w*—v") =2p(yv*— ) ;
attending to the value of £, this divides by #*—*; in fact the equation may be written
2 + 2 2
2y+p=- Tf—-;,%(w —’);
and then completing 1 the substltutlon, and integralizing, this becomes
{8@1&3(1 — o) (ot —ut)?) =4dup(w* 4 v*) (L —v?0)(1 — ue®),
viz. this is
4(1—vw)uv{ 20 (1 —v’u)— (v’ +0*)(1 —vv*)} + (v'—u)*=0
and the term in { } being = — (v*--u*)(1+vv*), the whole again divides by v*—u?, and
the equation thus becomes
(V" 4u?) (v —u*) — dur(1—v*u)(1 +ou?) =0,
which is the modular equation.
43. The septic transformation, n=".

I'do not propose to complete the solution directly from the fundamental equations
for a, 3, y, 9, but resort to the known modular equation, and to an expression of M
which I obtain by means thereof.

The modular equation is
(I—v)(1—0*)—(1—w)=
which may also be written
(v— 7 )(u=—0") + Tur(1—uv (1 —uv +-wv?)?,
as can be at once verified; but it also follows from Cavemy’s identity,

(@4 g — & —y =Tay(@+y)(@*+ay+y°)
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‘We then have
1 (1—=0®)F%
M=— (I—u)uFy

Moreover
uFu=—uv’(1—2°)4uv(l—uv)

—8
=1TZ¢8(1 — )’ +uv(l—wuvy

— )7
:(—11:%21 w(v—1u7);
and similarly
—_ 7
Fo= (11 __z:;) v(u—1v"),
whence
' 1 —___7u (17 - 11,7)

M= Ty u—o
Writing this under the form

1 —=Tw (v=u") (u—27) 49621 —w)*(1 —uv +u%?)?
M2 (w—ov")2 > — (w—27)? ’

I find, as will appear, that the root must be taken with the sign —, and that we thus
have L = _— 7u(l—w) (.1 _7uvv+1%%2)s whence also M= (1 =) —w+u%?)

M , Cu—v ~ 2 v—u
- 44. Recurring now to the fundamental equations for the septic transformation, the

coefficients are a, 3, 7, 0, and we have

/ 4
=1 . = (-5 |

u?

B=qp—1, =1,

so that the coeflicients are all given in terms of v, M. The unused equations are
U2y + 20 +£7) =0(y*+ 290+ 230),
u=*(y* + 2By + 205+ 283) =0*(2uzy + 28y + 2ed+£7),
which, substituting therein for a; B, v, 8 the foregoing values, give‘ two equations; from
these, eliminating M, we should obtain the modular equation, and then M in terms

of u, .
Substituting in the first instance for e, d their values, the equations are

u‘*('26+2y+62)=v2{y2+2’—§<a+y)}

"72+237+(2+2(3)%7=u%2{27+267+2@—§+62}.
The first of these is
A(1—w)(26+29)+ 48— 4 5 =0,
viz. this is
, 4(1_uv)<§4—._1 +l¥"g)+(ﬁ—l>2—ve<ﬁ_;§>;0;
3L2
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or observing that in this equation the coefficient of % is
A—v*){2—2uv 420> —1 —u™’},
=(1—v*")(1—w)?, =(1—ww)*(1+4uv),
the equation becomes

(1) 3oy — (L) 1= — 41— ) (145 =0,

45. This should be satisfied identically by the foregoing value of Ml—; viz. it should

be satisfied on writing therein

1_ e
M= T o u—d?’
1 Tu(l—w) (1 —uw+u?),
M~ u—v7 ’

that is, we should have

-7 %(’U — u,7)(1 '—'DB) — 14/“(1 _m}y(l i)

u?
+(u—v7){1—u3—4(1——m)) (1+-5)}=0,
where observe that the — sign of the second term is the sign of the foregoing value of

Kl/[— ; so that the identity being verified, it follows that the correct sign has been attributed

1
to the value of 37
46. Multiplying by v, the equation is
—T(1l—wt =T —uw)(1 —v*) = 1dur(1l —uv)'(1 +u%?)
+{1-*"—1—w}{—8(1—uv)+1—u*} +4(1—uv)(v—u’)(u—2")=0,
viz. this is
—T(1=w)(1—0")+7(1 —wv)(1—0*) — 1dur(1 —uv) (1 +u*")
+ (1—v®)(1—0*)—8(1—uv)(1—2*)+ 8(1—uw)?
—11—w)(1—u*)+ 4(1—ww)(v—o)(w—2")=0.
In the second column the coefficient of 1—wuw is 2—u®—1%, viz. this is
=(1—=u’)(1—2*)+1—(w)’, or it is =(1—uv)*4+1—(w)".
Reducing also the other two columns by means of the modular equation, the equation
thus becomes
—6(1—uv) — (1= uv){ (1 —ww)* 41 — (uv)*} — Lduv(1 — uv)*(1 4+ u*°)
+ 8 (1—w)?
—28uv(1—ww)*(1 —uw + ) =0.
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This is in fact an identity; to show it, writing for convenience 4 in place of uw, and
observing that the terms :

—(L—0)(1—)+8(1—0F,
(1—0P{8—(1+0+F+C+ 06+ +0)} are
(1 =0 (74604504 46+ 36'+26°4-¢°),

the whole equation divides by (1—8)?; or throwing out this factor, it is

—6(1 =8 — (1 —0)° 4T+ 66+ 5¢*+ 46°+ 36*+ 26°4-&°
—144(1—6)(146°)—284(1—06+4-¢*)*=0.

The first line is =146(3—56-+ 66— 36°+4-6*); whence, throwing out the factor 146, the
equation is

I

3—b0466—36°+6'—(1—0)(146)—2(1 =646,
that is
(1—=0+6)(3—20+40)—(1—0)1—046)—2(1—046)=0;

or throwing out the factor 1 —4--¢* the equation is
(3—20+6*)—(1—6°)—2(1—0+6*)=0,
which is an identity. ’
The other equation is

u? ou?
7'+2B7+(2+2) ;=u”v”(27+257+2 ;+Bz) ;
that is
u7 )
7+ 2By — B+ 2(14B) (5 —yue” ) —2un=0,

which might also be verified, but I have not done this.
47. The conclusion is

1 1wt 7
oc:l, ﬁ:% (M—-1>, 7:%u3v3(ﬁ—;4>, B:%a

where
1 —Tu(l—w)(1—uv+uh?)
M u—v’ ’

and of course

1—y  1—=2 (1—Pr+y2®—02°%\?
14y~ 142 <1 +ﬁx+yx2+8x3) ’
but the resulting form may admit of simplification.
48. The endecadic transformation, n=11.
I have not completed the solution, but the results, so far as I have obtained them,
are interesting. The coefficients are «, 3, v, 0, ¢, &§; and we have, as in general,

ut

1
=1 ) 22———1077)3(M—;z>,

1 11
28=y—1, r="
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The unused equations then are
w(2ey + 208 + 37)=v(* 4 2¢& +28%),
WA+ 2acs 2> 2Py 1 200) =07 (2 2f + 2028 +2),
wN(2ye+ 208 + 295+ 2Be 42688 + ) =0*(y*+ 26 + 208 + 290+ 234 233),
w1 + 298 4206 + 208) =v*(2ey + 200+ 2By + )
but I attend only to the first and last, which, it will be observed, contain y, & linearly.
If in the first instance we substitute only for «, & their values, the equations become

?)2 4’11,]1
wB(24B)—pz¢ (€+2 ‘,;) +u. 2y —ou?. 2=0,
? (1 o . 1 9
u%? —593 (3 +{&E—$§ (1+B)} . 27+{%~—§—g+u‘” e} W=0;

say, for a moment, these are
A+P . 294+Q. D=0,
B+4+R.2y48S .25=0,
giving ‘ :
1:2¢:20=PS—QR:QB—SA:RA—-PB.
Here '

PS— QR=">+s— v+ — (1 + )

_12_'“]% 731. 'ﬁl_l 2A102‘ Qus 273 731‘ 7943
=3—} WU — 20" 20° — 207 0° — W= ) 0y

1) N

where the terms containing g7 disappear of themselves, viz. this is

(u
= 3 (ﬁ—— 2u‘°@2+.2u8—u7va)

v
7
=—1% (v*4-20%u® — 2ou—u')
) .

(observe that the term in (), equated to zero, gives the modular equation for the case
n=3). It thus appears that y and J are given as fractions, having in their denominator
this function «*+4 2uv— 2w v* —v'.

49. To complete the calculation, we have

E‘l UQ
QB—AS=—w* (171@—55 @2)
2 11 (1 2 e
—{epep -2 ) Ha—atin)
viz. multiplying by 8, and substituting for 203, 2¢ their values, this is
1 4\ 2 2 /1 2
8(QB—AS)=—2vu® {u%“ (M—%‘) _2—2<M~_1) }

o) o)) ) )
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or, what is the same thing,

_%(QB_AS):Q{W ( 1 _§>2é@4 ( 1 _1)2}

() (o) o) G ) -2,

viz. the left-hand side is

_2{_94(1-—10 ) e+2”4(1’““8) e }

or say we have -—~(QB SA)-—H where
M= 3. v‘(l——vﬂ)

- v (u—20)(1—")

+ 1\11 . 4u7fv7+v4(1 — 3u8) — 4wt 2ut
| + =20t 6001 — )+ ut(—34-5uf);
wherefore the value of 2y is =311+ (v‘ +2v°u*—2Zvu—u'). Similarly, writing
(1)

=" M“’ )

—‘I—l\—lﬁ . 7)(223-;210)(1 — )

- l\ll Aot (8 —uf) + duv — 2ut®
4+ o} (—=543ut)+6vu(l—ut) + 20,
we find :
3
W=% % Il + (v* 4 20°0® — 2vu—ut);

in verification whereof observe that this being so, the first equation gives the identity

{(ﬁ_:l)(;—r{"?’)—vs(ﬁ u4)<M+ )}(v +2@u—2mo—u“)-|—ll =0,

50. The result is that, writing for the moment vt 20 —2vu—ut=A, the values of
the coefficients are

o , 3 s &
' /1. 1I w3 I1 1«4\
=1, %(M—1>, A A %%703(1\‘4*;;), -

a1 1— B2 + 22 —8a® + eat — {25\ 2.
an 1+y 1+a," 1+ Bz +rya®+0a%+eat+ &) 2

the modular equation is known, and to complete the solution we require only an expres-
sion for M in terms of w, v.
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51. We may herein illustrate the following theorem, viz. we may simultaneously change
, , 1;—14, w:f:y:0:e:¢ into }7 %, g':'l\li’ Eie:diyip .

Thus in the equation
| :§<—-1> making the change, we have

: v ) /1wl v 1
§:%<174M 1); that 15,%—4<M—;)—;(M4M 1)

which is right.

So in the equation % %%, if for a moment (H), (A) are what II, A become, the
. ! 1
equation is %:% % , that 1s,%é %—_g) r (I)=_s (——) II'; but obviously -+~ @) =i

and the equation thus is (IT)=— 121—9171 IT, or say w*v*(II)=—1II'; that is
12 1 1 1
-—H’:u”eﬁ{ 22 ME 65(1 —55)

® 1 1/1 2 1
T e ;;(r—> (1—;@)

which is right.

The general theory by q-transcendents.—Articles Nos. 62 to T1.

52. I recur to the formula

1—y 1—a/a—Bx+ya®.. foni®=\2
14y 1+a\a+pBr+ya®.. +onia=D

mK + iK'

b

and seek to express the ratiosa:3...: s intermsof . Writing with JAocoBI o= -

we have in general

wtprtys®. .. for"V=qu <1 + mm?w) <1 + snfﬁla)) : (1 + sne (n— 1)w)

(snc =sincoam; viz. snc 2e=sn(K—2w), &c.),

and the values of e, 3, ... which correspond to the moduli v, v,, ...,, or say the
values (ot Bgy e+« ) (015 Bys « e 1)y« o« (et Prs -« . 4,), are obtained by giving to » the values

Do 5 @, y oo @y

_2K 2K+4iK' 4K+iK K

v b
n’ n ’ n ’ n
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viz. the cases w,, w, correspond to JACOBI's first and second real transformations, and the
others to the imaginary transformations.
I remark that w=ua, gives for snc 29w an expression which is rational as regards ¢,

. .
but w=w, an expression involving ¢”, the real nth root of ¢ ; the other values, w;, w,,. ..,
1 1

give the like expressions, involving «¢”, «’¢”®, ... (« an imaginary ath root of unity), the
imaginary nth roots of ¢.
63. I consider first the expression
1 _ 1 __dn 2ge,
snc2gw,’  sn(K—2gw;)’ ~ cn 2gw,

Here, writing 2gw0————5 (€ for JacoBr’s #, as & is being used in a different sense), that is

2K 9
—_ o T
5—21{' g =

2mi 2mi
. 8- ; . - . . .
(and thence ¢¥*=¢ " =0, ¢*=0a%, if x=¢", an imaginary nth root of unity), we have
(Jacosi, p. 86)

2
a2 2

sne 2gw,

C 2  (L+ge¥)..(L+ge™™)..
- B 1 +e2z£ (1 + qu21§) (1 + ng—mé‘)

( (Sig)> fz(q))

1 2af f2(g) . (T+a%q) .. (1+a—%%q)..
sne 2gw, 1 4«28 (1+a%¢? .. (1 +a2%g) ..

that is

?

where, for shortness, I write (1+4¢¢**)... to denote the infinite product

(I+ge) 1+ g e )1+ g¢™).. .,
and similarly (14-¢%**) . . . to denote the infinite product (1 4 ¢%*)(1 4 ¢'¢**)(1+¢%*). . .,
and the like for the terms in ¢=*¢: the notation, accompanied by its explanation, is quite

intelligible, and it would be difficult to make one which would be at the same time
complete and not cambrous; and then attributing to ¢ the values 1, 2...4(n—1), and

forming the symmetric functions of these expressions, we have the values of é, Y, &c., or
2] o

o being put =1, say the values of 3, %, . ..
64. 1 stop to notice a verification wfforded by the value of B, Putting =0, that is
¢=0, we have
1 208
sne 290)0: 14a%’
and thence

o o? ad ai(?=1)
60:2{1+a2+1+a4+1+a§"+ 1+an—-l}’

MDCCCLXXIV. 3 M
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n—1
we have ZB(,:-I\—}I— —1; and putting as above u=0, the value of ;4 is=(—)* n
0 ]

whence

2 3 ai(n—1)
( =) n—l= 4{1+a9+1+a*+1+a6 - 1+a”“}’

a theorem relating to the imaginary nth roots of unity, » an odd prime. In particular

n=3, —4= 4{ 2}, at once verified by «*4«+1=0,

o? .
n=>5, 4:4{1—_%‘-2—}——1?}, verified by «*—1=0
(viz. the theorem is also true for the real root «=1); in fact the term in { } is

(1 4et)+ax(1+e) +(1+o?)(1+a), that is (et1+e+ot)+ (14t +at +a), =1

o o2 a8
%:7, _8:4{1+a2+1+ﬁ4+1+0€6},

which may be verified by means of «’+o°4at4o’+o*+a-+1=0; and so on.
85. I further remark that we have

L:—(__ )%(”_,l)' sn 2w, sn 4w, . .sn(n—1)w, 12
M, sne 2w, .snc 4ag. . sne(r—1)wy| °

But Jacosr (p. 86), ,
2KE&

sn 2gw, =sn——>:

_AK @1 (1—¢%) .. (1—¢% ).,
T om e (l—ge¥) .. (1—ge ).,

where (p. 89)

AK_ Vg _l{(_l_iwg } 3£ (q),

= VE 20 +HHA+gY-
that is,
%1 (1—a%q?) .. (1—a"%g2). .
Yw—F 20 % q VAR
0 290=f" - G (I aeg) . (=g
Hence

sn2gwy  a%¥—1 1—a®¢h.14a%q .. 1—a"" 2% . 14 a2, .
sne 29wy~ (@ 4+ 1) 14+a%¢% . 1—a%q .. 1+ %¢% , 1 —ar—2g .. ’

and giving to ¢ the values 1, 2, ... {(n—1),and multiplying the several expressions, we

1 . ..
have the value of > Viz. this is
0

=y R,
where R(g) denotes the product of the several factors which contain g.
56. The (¢*) of the denominator gives a factor ¢*, :(—)”T‘I, which destroys the
factor (——)%:l We have then a factor'

22 —1\2
22811 i 1§ == i(n—
H(a%'.l_ 1) ) which is ._(.....) Dy,
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aﬁ_l 2
(ag—i- 1) ==3,
viz. the numerator is e—2¢*41, =—3¢«’, and the denominator is (—«)?, =«
So n=35, the formula is

a?—1 a*—1\"__ (a2—1)4__
<9+1 u+1> =b, thatls( T =b;

In fact, n=3, this is

or
a3—-4o®4-6at—4a+1
ad+2at 41
viz. this is (14 a*+20*)— (1 —4e—4e*+ a*+60*)=0, which is right; and so in other
cases.

‘We thus have

=5,

3= () n  R(g),

which, on putting therein ¥=0, that is ¢=0, gives, as it should do, I\_}_:( — )=V,
0

67. As regards the expression of R(g), observe that giving to g its different values,
the factors 1 —a*g? and 1—co"%¢* are all the factors other than 1—¢* of 1—¢*, and
so as to the other pairs of factors; viz. we have '

1— q l4gn 1447 .. 1—q .\

R)=(T= T it 1=g)
(1= 14gn N\ (1—g% . 14g. .\
T\l 1—gn.) T \14+¢%.1—g..)°

n-vy, P07
Mo_( ) O

viz. this is

that is

agreeing with a former result.

68. We have of course the identity 2BO=M1-—-—1;’that s,

8 n—2g 7%
U3 D) e (L arg - =() e -1
(9:1,2, .. —%(n-—-l)), which, putting therein ¢=0, is an identity before referred to; a
form perhaps more convenient is obtained by dividing each side by *(g).
59. I notice further that we have
| vo=1u"{snc 2w, snc 4w,...snc(n—1)w,};
the term in { } is

I 1+4+a% - _(}+u23q2) (14 anmg)2.,
208 ( )(1+u5'q)..(1—|-a""26’q)..’

1+a% 102 . 14a?
te =(—)¥*-V, For example, n=3, the term is — =—1;

3 M2

where we have I1
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n=>0, it is
14+ (142 1 Foltattea
= 3

2 ) o 3=_1;

.o

n="T, it is

(142 (1+a%) (1+45) 1+a+oa?+ a3+ at+a®+2a8
P = ab =1,
and so on. The term in question thus is

oo 1 _ 14g". . 14¢q ..
— Ji2-1) wf n+ L. GRS AL
R % AN A o e

that is
(=) =l @A)

This has to be multiplied by ", =(s/2)"¢* f"(¢), and we thus obtain
7)0:(_)~§(n2—])\/§g§f(gn)’

agreeing with a former result.
We have in what precedes a complete g-transcendental solution for the ransformatio
prima; viz. the original modulus #°(=u") being given as a function of ¢, then, as well

the new modulus 2j(=v;) and the multiplier M,, as also the several functions which
enter into the expression

[ KA @ 12
l—y_l_—f.l (1_ sanwo) e (1_snc(n—1)w0> L

T+y L4z z z i
{(1+sncgw0) e (1+§EE(72—:1_)70>

are all of them expressed as functions of ¢.

60. I consider in like manner the expression

1 1 _ dn 29w,
sne2gw, sn(K—2¢w,)’ — cn 2gw,”

. 2K .
Here, writing Zgwn=7g (£ instead of Jacosr’s & as before), that is

. iK' gmiK!
=520 ="
and thence
. _RTK g
(="K =gn,
we have

1 9K | 9Kg
snc2gw, nTTCHT
g 2 2%
_ 2gn  (14+¢"t%).. (14+¢"79)..
=F%q). qeg.( +q 7). (I+¢ ™)

2 2 2 ?
L4gn (1+¢" ). (144°7)..
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where the notations are as follows:

2 2, 2, 2,
. (1—|—g1+7§) .. is the inﬁnite product 1 +gl+f)(1—|-g3+7&g)(1 —I—QHf) .
an

(1+g2+27§) the infinite product (1+g2+?)(1+g”%wg)(1—|-g“%) o
and the like as to the expressions with exponents containing—gng.
And then attributing to ¢ the values 1, 2, ..3(rn—1), and forming the symmetric
functions of these expressions, we ha.ve‘the values of g, ?;’, .. E; or « being put =1, say

the values of 3, 9, ... 0.
It is easy to see, and I do not stop to prove, that if instead of w=w, we have

1
w=w,, &,... Ol w,_,, we simply multiply ¢» by an imaginary nth root of unity; that is,
1
replace the real nth root ¢» by an imaginary nth root of ¢.
=0, and thence 3=0; and the like

In the case u=0, that is ¢=0, we have snc2gw,

.o 1 ) 1
for the values w;, ,, . . . w,_,: the equation 2b=ﬁ—1 gives consequently for M values
each =1, agreeing with the multiplier equation.

61. We have for M, the formula

1 ;_(-_)%(n_‘) sn2w, sndw, .. .sn(n—1)w, )2
M, snc2w, sncdw,. .. snc(n—1)w,

and, as before,

20

_g(g) 9”_1 (1— ‘] .. (1—g¢ %—)-';
2ign (1— 9”7) (1—g""%)..

sn 2gw,=

hence
2 2% 2 2
sn2gw, _ gn—1 (1— q”") L+ Q=g M) (Lhg" ).

2z

29w, ., 2 +28 -2 =
S0 gt 1) (g™ n)es (=g o) (L7 5) . (L—g' 5.

. 1 . . : . .
and we thence derive the value of M5 iz observing that we have in the denominator

()0, =(—)»=» which destroys this factor in the expression of X A this is

2

(% % % % %

1—gn» (1-—.61”")--(1+q’+ﬂ)--(l—q2 ). (L4g'7n)..
28 28 2g _% %

L1+gn (4" ) (=g ") (L4 ). . (1=¢" 7).

Now, giving to g its values, it is easy to seé¢ that we have

1
i, =11

TI(1 — oY1 — ). (1— 2*2755) _.(i:_,z”,) -
(1—g*)1—g") g 1=¢)..

2 . 2 4 6 1
where (1—g¢~).. denotes (1—g¢*)(1—g¢*)(1—g*).., viz. it is the same function of ¢~ that
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(1—¢*)..isof ¢; also

1+ 12 1+4¢n
T(1+4"7).. (1+477). —((Hg)’

where (1 —|-g7:) . . denotes (1 +951)(1 -|—g£)(1 + gﬁ) .. ,Viz. it is the same function of ¢g» that
(I4+¢)..1s of ¢; and the like as to the denominator factors: we thus have

2 1 12

_1__[(1-—@)‘.. A4g9).. 1+¢).. 1—q)..|

M"—lu—g%).. Utg).. (tgn).. A—gh)..]

viz. this is ;
r 2 1 2 2
Ry EYo | #l_w ETY
L@+gn) .. Q=g .. |Q+)..(0=09)..]
or we have

=0'(¢")=+¢9),
agreeing with a former result.
We have

23,,:-1%;-_1, that is

1 1 1 __¢%(g7)
2{snc 2w, T 4w, """ +SDC (n— 1)‘%}_?‘%(9) -1

a result which, substituting on the left-hand side the foregoing values of the several
functions, must be identically true.
62. We have also »
v,=u"{snc 2w, snc 4w,...snc(n—1)w,},

where the term in { } is

14g2) (149 =)..(1 %
=IIf (g )( +q7) ( q+ﬁ) (1+¢ 2g) :
ogn  (14¢R)..(14g" ™) ..

or observing that the sum of the exponents % is -{1 +2.. +i(n-1)}= =—5, this is

L 1 1+7, 1+g)...
—F="1(g). (I+g7)..(1+q)

ni-1 1 >

S (V2rig e (L46°) . (1+g) ..

or, the last factor being f(ﬁ) +f(q), the expression is
F @ gy o )
or, multiplying by u*, =(+/2)" g% f"(q), we have
v=n/ 20

agreeing with a former result.
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‘We have in what precedes the complete g-transcendental solution for the transformatio
secunda ; viz. the original modulus #(=u‘) being given as a function of ¢, then, as well
the new modulus A,(=v:) and the multiplier M, as also the several functions which
enter into the formula

‘ 2 . z
1—y l—2z ( (l_snc Zw,,)'“<1 snc(n——l

}
I

1+y~ 142 x
1{ <1+snc2wn>“'(1 sne( n—l I

are all expressed in terms of ¢. The expressions all contain gf"Z, and by substituting for
this an imaginary nth root of ¢, we have the formulae belonging to the several (n—1)
imaginary transformations.

63. Asan illustration of the formule for the ¢ransformatio secunda I write n="7; and

2

1
putting for greater convenience g=77, that is r=4¢7, then we have
=1 1 r
o=/ 2r5f{(r), M, 2&}7)

sne 2w ‘)f 2(1' )A’ snc4w —2f 2( 7)B’ sne Gw -Zf 2(7'7)0

where
A=7‘.5'19"' 9.23..’
2.16...12.26..
2 3.17..11.925..
B"7'2'4.18.. 10.24..
1.15.. 13.27..

*6.20.. 8.22..°

where the numerator of A denotes (1+7°)(1+47)..(14+7°)(147%).., and so in other
cases, the difference of the exponents being always =14. And we have, as mentioned,
the identical equation

FONA+B+O)=1 1]

The values of the several expressions up to #** are as follows. Mr. J. W. L. GLAISHER
kindly performed for me the greater part of the calculation.



444 PROFESSOR CAYLEY ON THE TRANSFORMATION

ind. Multiplied by o*(r)
ofr. A B € Sume pn. T Se,
0 0 0 + 1
1 + 1 + 1 + 1 + 4
2 + 1 + 1 + 1 + 4
3 -1 + 1 0 0 0
4 + 1 + 1 + 1 + 4
5 + 1 + 1 + 2 + 2 + 8
6 + 1 —1 0 0 0
71 —1 -1 - 1 — 4
8 -1 — 1 - 3 — 12
9 + 1 — 1 —1 -1 — 3 — 12
10 + 2 + 1 — 1 + 2 + 2 + 8
11 — 1 —1 — 2 — 4 — 16
12 — 2 -1 — 1 — 4 — 8 — 32
13 2 + 2 + 2 + 8
14 + 2 — 1 + 1 + 3 4+ 12
15 + 1 — 1 + 1 + 1 + 8 + 32
16| — 2 + 2 + 2 + 2 + 9 + 36
17| — 2 — 2 + 2 — 2 - 6 — 24
18 + 1 + 1 + 2 + 4 + 13 + 52
19 + 2 + 2 + 2 + 6 + 24 + 96
20 — 3 + 1 - 2 — 6 — 24
21 — 2 + 2 — 1 -1 — 8 — 32
22 — 2 + 1 — 2 - 3 — 20 — 80
23| + 2 — 4 — 3 — 5 — 24 — 96
24| + 3 + 3 — 4 + 2 + 16 4+ 64
25 -1 — 4 — 5 — 33 — 132
26| — 4 — 3 — 3 —10 — 62 — 248
7 — 2 + 5 | =1 + 2 + 16 + 64
28 | + 4 -3 | +1 + 2 + 19 + 76
29 + 5 — 1 + 3 + 7 + 46 4 184
30| — 3 + 6 | + 5 + 8 + 56 + 224
31 - 7 — 6 + 7 — 6 — 40 — 160
32| +1 + 1 + 7 + 9 + 77 + 308
33 + 9 + 5 + 4 +18 +144 + 576
34 + 3 — 8 + 1 — 4 — 38 — 152
36| —9 + 5 — 1 — 5 — 42 — 168
36 — 7 + 2 — 3 —10 — 99 — 396
37| + 7 -9 -9 —11 —122 — 488
38 +11 +10 —-11 410 + 88 + 352
39| — 4 — 3 —10 —17 —168 — 672
40 | —13 — 8 -7 -28 —310 —1240
41 — 2 +13 — 3 + 8 + 82 + 328
42 +13 — 8 + 3 + 8 + 88 - + 352
43 -+ 8 — 3 + 9 +14 +204 + 816
44 | —11 +14 414 +17 +252 +1008
45| —14 —14 +16 —12 —182 — 728
46| + 5 + 4 +15 +24 +344 +1376
47 +17 +11 +12 +40 +632 +2528
48 + 3 —20 + 5 —12 —168 — 672
49 | —17 +13 -5 =9 —175 — 700
50 | —13 + 5 —14 —22 —401 —1604

4. As already mentioned, the foregoing expressions of the coefficients in terms of ¢
may be applied to the determination of the coefficients as rational functions of w, .
Representing by § any one of the coefficients @, 8, y .. . o, consider the sum

S
e
o
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f a positive integer, and the summation extending as before to the n-1 values of v,
and corresponding values of ,% This is a rational function of %, and it is also integral.

As to this observe that the function, if not integral, must become infinite either for ¢ =0
(this would mean that the expression contained a term or terms Aw™*) or for some
finite value of ». But the function can only become infinite by reason of some term or

terms of Sv” " becoming infinite; viz. some term - must become infinite; or attend-

snc 2gw

ing to the equation
v=u"{snc 2wsnc4w ...snc(n—1)w},

it can only happen if w=0, or if v=co; and from the modular equation it appears
that if v= 0, then also w= oo: the expression in question can therefore only become

& 'Z, ..., each of them a

infinite if =0, or if = . Now w=0 gives the ratios 2

determinate function of #, that is finite; and gives also v=0, so that the expression does
not become infinite for #=0; hence it does not become infinite either for u=0 or for
any finite value of w; wherefore it is integral. The like reasoning applies to the sum

Sv~Z; viz. this is a rational function of «; and it is quasi-integral, viz. there are no
M :

terms having a denominator other than a power of u, the highest denominator being
u™; viz. the expression contains negative and positive integer powers of #, the lowest

power (highest negative power) being 271"7
65. It is to be observed, further, that writing the expression in the form
9 8
’U{; ;‘i +S”vf 2
(where §' refers to the values v,; v;, ... v, of the modulué), and considering the several
quantities as expressed in terms of ¢, then in the sum S’ every term involving a frac-

h I
tional power ¢» acquires by the summation the coefficient (14+a+-o’... 42"""), and
therefore disappears; there remains only the radicality ¢* occurring in the expressions of
the v’s; and if nf=p (mod. 8), »=0, or a positive integer less than 8, then the form of

the expression is g% into a rational function of ¢. Hence this, being a rational and
integral function of u, must be of the form -

Aw* 4+ Bu+e4Curt10 4 &e.
66. We have thus in general
8072 = A+ Bur s &e.;
and in like manner ,
Sy~ g:A'%‘"f +Blu* 4 &e.

MDCCCLXXIV. 3N
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We may in these expressions find a limit to the number of terms, by means of the before

. v . a ., 11,
mentioned theorem that we may simultaneously interchange u, v; «, B3, ... ¢, ¢ into = =3

7, 0, ... 3, @. Starting from the expression of Sy’ g, let ¢ be the corresponding coeffi-

cient to ¢; viz. in the series o, ..0..0..¢, 0,let ¢ be as removed from ¢ as dis from «;
then the equation becomes

Sv=/ Tf :Au"‘—]—Bzo‘““ﬂ—F &e.,

q-e
m-&
Rlﬂ

o v
where =55 the equation thus is

Sv“fE:Au”"“ + By 8 &e. ;

and by what precedes the series on the right-hand side can contain no negative power
higher than le_—;) ; that is, the series of coefficients A, B, C. .. goes on to a certain point
only, the subsequent coeflicients all of them vanishing.

In like manner from the equation for Sy~ g we have

¢ —
Qpr+1® _.Alu(n+l)f+Blu(n+l)f s 1 &e.,

where the indices must be positive ; viz. the series of coefficients A, B, .. goesontoa
certain point only, the subsequent coefficients all of them vanishing.
67. The like theory applies to the expression ﬁ We have, putting as before
nf=pm (mod 8),
S 'vf——=Au"+Bu'*+“+

Sv~/ —;I:A’u‘”f+B’u“”f+9+. ..

and we find a limit to the number of terms by the consideration that we may simul-

4
taneously change w, v, M into 1, 1, ‘?:M the equations thus become

Svt=7 1%leu“"‘ +Butr 4. .
(where, if f= or <4, there must be on the right-hand side no negative power of «; but
. . . 1
if f>4, then the highest negative power must be m) , and
Sv*“fﬁ:A’u”f*;4+B’u”f‘4+. ey

where on the right-hand side there must be no negative power of u.
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68. It is to be remarked that 3, ¢ being always given linearly in terms of i\ll" it is the

same thing whether we seek in this manner for the values of 8, ¢ or for that of 1‘14[— ; but
the latter course is practically more convenient. Thus in the cases n=>5, n="T we
require only the value of ﬁ

In the case n=11, where the coeflicients are «, 3, v, 3, ¢, £, it has been seen that ¢, 3
‘ 1
M
process ,be practicable) be obtained in a better form, viz. instead of the denominator
(F'v)* there would be only the denominator F'(v).

are given as cubic functions of - : seeking for them directly their values would (if the

69. I consider 'for ﬁ the §a_ses n=3 and 5 s

n=3, f=0, 1, 2, 3, then n=0, 3,6, 1;

and we Writefdown the equations
1 , P . .
Sy=A giving Syp=Au,
. 3
‘S—szA'zﬁ ’ S%I:A’u,
2 -',UQ
S "M-——' 1) S M’:O N
viz. if we had in the first instance assumed S M:A—{—Bu"—l—. ., this would have given

4
v . . . . .
y—Au'+Bu*+.., whence B and the succeeding coefficients. all vanish ; and so in

other cases. We have here only the coefficients A, A'; and these can be obtained without
the aid of the g-formulz by the consideration that for =1 the corresponding values of

1
v, M are
v=1, —1, =1, =1,

1,
M= -1, -1, -1,

whence A=0, A'=6; or we have the equations

1 v . 2 v®
SM':O’ S M:G’Mﬁ, S —M‘.:O, SM-——'@U,
giving as before
(2v°43v*u—u) —IM= 3(vw’+2u*v+1)u,

reducible by means of the modular equation to ‘—1\%:1 _l_?g_”.
70. n=56. Corresponding tof:O, 1, 2, 3, 4, 5, we have #=0, 5, 2, 7, 4,1,

3N2
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and we find
1. .. Ca .
Sy=4A giving Sy =Au
v v
Sar=0 ’ Sy =0,
2 2
S §4 =Aly? ’ S %i =A"w?,

5
S%,IzA”u-l—B"u" » Sv"‘ﬁ:A”zﬁ-{-B”u‘s.
But for u=1 the corresponding values of v, 1\% are
v=1, -1, -1, —1, —1, —1,
M=5 1, L 1, 1, 1

whence A=A'=10, A"4B"=0, or say the value of S—K—; is =A"u(1—u’).
‘The value of A" is found very easily by the g-formule, viz. neglecting higher powers
of ¢, we have v
20

‘l%[i:;%-{-s’ E’i, =bg(v/2)’=A"g}/2; that is A”=20, and the equations are

1 v ? U 4 I
S3i=10, S3=0, S§=100% Sy=0, S M=10u S 3yp=20y(1—v%);
whence
Fly. 3-=20u(1—u)
| —10u*(Sv,—v)
— 10u*(Sv,v,0,— vSv,0, +v*Sv,—v*)
—10  (Svg,0,0,0, — vSVW, V5 +0*Svev 0, — V*Svv, + 'S, —0°),
where Sv,, &c. are the coeflicients of the equation |
V84 40%u® 4 dvtu? — Sv*ut — dou —u’=0,
viz. Sy, VeVyy VU Vg VU Ugl5 U0, V050,
are —4u?, +Hu?, 0, —du*, 4y ;
or the equation is
Fo. —1\11= 20w (1—u?)
—10u(—4u*— v)
—10u( —Surv—4up*— %)

—10 (4w +5u'v — 5o — 4vud —°),
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or say :
1T M= S5{v’+ 4v'w'+ 6vw’44v'w 4 vut—2u(l—uf)},

where
$Fv = 341000 +100%7 —dvut—2u.

Hence also, reducing by th‘ev modular equation,
%vF’vKI,I‘: Su{vtu+4viut+ 6vv2u3—|—2v(1 +uf)+u'},
the one of which forms is as convenient as the other.
71. Making the change w, v, —1:_/[ into v, —u, —5M, we have
—3Fu . SM=56{ —vw'+44v*u'— vt 407 — viu— 201—°)};

and comparing with the equation

o (1=0%)0F"
OM'=— (1 —u®yuly’
we obtain
v(1—0%)  —20(1—1%) —vtu+ 407u® — 60%° + 40ut —o®
u(1 —u8) — —2u (1 —ud) 4+ utv + 4u"v? + 6u® + 4ud* + o5

Writing for a moment M=wu*+6u*’+4v', N=u>4-2", this is

v(1—=2%)  —20(1—2°%) —uM +40°*N
Tul—d®) T —2u(l —u8) + oM +4v‘u’N’

that is

449

—4up(1—uf)(1 —2*)— {w(1 — *) — (1 —2*) ) M+ 4v°w* {2’ (1 —0°) +-0*(1 —»*) N =0.

But we have

w(1—u®) —v*(1—0°) =(w— ") {1 — v’ — v’ — o' —w®—v°},

(1 —v*) +0(1— o) = (v’ + ") {1 — v’ (' — v’ +2*)}.
Hence, replacing M, N by their values, this is

—dup(1—u*)(1—2°)

— (v —v*)(1 — v — % — u'v* — 1?0’ —o®) (' 4- 6uv® 4- )

4wt (u? 407 { 1 — w20 (ut — PP 4-v*)} =0 ;
viz. writing v*—v*=A, w=DB, thisis - ;

- —4B{1—A*—4A’B*—2B‘4-B°%}
— A{l1—A‘—b5A"B*—3B*'}(A*4-8B?)

4 4B*(A? 4 4B%){ 1—AB*—B*} =0,
that 1s

_4B{(1— A'—4AB?— 2B BY) — BY(A? 4+ 4B7)(1 — A*B*— BY)}

— A(1—A*'—5A’B*—3B*)(A*4-8B*)=0;
viz.

—4B(1—A‘—bA*B*—3B%)(1—B*)
— A(1—A‘—HA*B*—3BY)(A*+8B%)=0;
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or throwing out the factor — (1A*—5A’B*—3B*), this is
A(A*+48B%*)4-4B(1—B*)=0,
the modular equation, which is right.

The four forns of the modular equation, and the curves represented thereby.
Article Nos. 72 to T9.

72. The modular equafion for any value of » has the property that it may be repre-
sented as an equation of the same order (=n-1, when # is prime) between u, v or
between 2, +* or between u*, v*, or between #® v®. As to this, remark that in general
an equation (4, v, 1)"=0 of the order m gives rise to an equation (u? % 1)™=0 of
the order 2m between #? v*; viz. the required equation is

(v, v, 1)"(w, —v, 1)"(—u, v, 1)"(—u, —v, 1)*=0,

where the left-hand side is a rational function of w? v* of the form (u? +* 1)™; or
again starting from a given equation (u, v, w)"=0, and transforming by the equations
a1y z=u*:1v*: w? the curvein (2,9, z)is of the order 2m ; in fact the intersections of the
curve by the arbitrary line ex--dy-+4-cz=0 are given by the equations (v, v, w)"=0,
ar’+bv*+cw’=0, and the number of them is thus =2m. Moreover, by the general
theory of rational transformation, the new curve of the order 2m has the same deficiency
as the original curve of the order m. The transformed curve in @, y, z, =u? ¢, w®* may
in particular cases reduce itself to a curve of the order m twice repeated; but it is
important to observe that here, taking the single curve of the order m as the transformed
curve, this has no longer the same deficiency as the original curve; and in particular
the curves represented by the modular equation in its four several forms, writing therein
successively u, v; o, ©*; o', v*; «*, ©°, =&, ¥, are not curves of the same deficiency.

73. The question may be looked at as follows: the quantities which enter rationally
into the elliptic-function formule are %, a*=w’, +*; if a modular equation (%, v)’=0
led to the transformed equation (%°, v*)*=0, then to a given value of #* would corre-
spond 8 values of u, therefore 8y values of v, giving the same number, 8, values of %;
that is, the values of ©* corresponding to a given value of #* would group themselves in
eights corresponding to the 8 values of w. There is in fact no such grouping; the
equations are (u, v)’=0, (v, v*)’=0; to a given value of «® correspond 8 values of v,
and therefore 8 values of v, but these give in eights the same value of %, so that the
number of values of v* is =.

74. I consider the case n=3: here, writing , y for u, v, we have here the sextic curve

Ly —at4-2ay(a®y—1)=0;

and it is easy to see that the remaining forms wherein #, y denote #2 v* v ¢*; and «f, v®
respectively, are derived herefrom as follows; viz.

II. (y"—a?)*—4day(ay—1)*=0, that is
y' 6% ot —day(2*y*+1)=0;
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IIL.  (y*4-6ay+a*)P°—16ay(ay+1)°=0, that is
Y62 42t — day(4a”y® — 32" — Sy*+4)=0 ;
IV. (9*+6zy+a*)—16ay(day—8x—3y+4)*=0, that is
Y —T622y" 4 a* — 4oy {642y — 962°y — 96ay® + 8327+ 88y — 960 — 96y + 64} =

where it may be noticed that the process is not again repeatablé so as to obtain a sextic
equation between z, y standing for '°, v'° respectively.

The curve I. has a dp (fleflecnode) at the origin, viz. the branches are given by
y*—22=0, —a°—2y=0; and it has 2 cusps at infinity, on the axes =0, y=0 respec-
tively; viz. the infinite branches are given by y+24°=0, —a+25°=0 respectively.
These same singularities present themselves in the other curves.

The curve II. has the four dps (2°—3*=0, 2y—1=0), that is

(r=y=1), (e=y=-1), (¥=i, y=—1), (¥=—1i, y=i).
Corresponding hereto we havein the curve III. the 2 dps #=y=1, r=y=—1, and in
the curve IV. the dp o=y=1.

The curve III. has besides the 4 dps z*+6ay+a*=0, 2y +1=0, that is
(1442, 1=4/2), 1—=/2, 14+4/2), (=1—=/2, =1+4/2), (=142, =1—=4/2);
and corresponding hereto in the curve IV. we have the 2 dps
(34+2¢/2, 3—24/2), (8—24/2, 34+24/2).
The curve IV. has besides the 4 dps 4>+ 6zy+4*=0, 4oy—3r—3y+4=0, or say
(22—3)(2y—3%)+1=0, 2(x+ 3 +2(y+4)*—247=0. Hence the 4 curves have respec-
tively the dps and deficiency following :—

dps. dps. Def.
2,1 = ‘ 7
2,1, 4 = 7 3
2,1,2,4 = 9 1
2,1,1,2,4 = 10 0;

viz. the curve IV. representing the equation between u® and ¢* is a unicursal sextic.

It may be noticed that except the fleflecnode at the origin, and the cusps at infinity,
the dps in question are all acnodes (conjugate points).

75. The foregoing equations may be exhibited in the squale diagrams :—

I. II. I1I1. IV.

v ¥y oy 1 P oy 1 ¥ ¥ oy oy 1 » ¥ ¥y 1
x* -1 +1 +1 +1
a8 +2 —4 —16] |12 —256 | +-384| —132
22 +6 +6 +884 | —762| +384
z —2 —4 N PRT R EY: —132 “+_3§Z —256
1[+1] 1 +1 +1 |

1 2 0 -2 -1 1 —4 +6 —4 +1 144 46— 441 1 —4 + 6 — 4 +1

=@+1y-1)

=(y-1)"

=(y=1)

=(y=1)
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where the subscript line, showing in each case what the equation becomes on writing
therein #=1, serves as a verification of the numerical values.

The curve IV. being unicursal, the coordinates may be expressed rationally in terms
of a parameter; and we in fact have

:a3(2+a) a(2+a)?

T e T A

These values give

162y =16a*(24a) +(142«)",
4442y —30—3y=(4, 8, 12, 32, 50, 32, 12, 8, 471, ) +(142e)},
2?46y +y° =4a’(2+2)'(4, 8, 12, 82, 50, 32, 12, 8, 47(1, «)f +(142a),

and the equation of the curve is thus verified.
76. Considering in like manner the modular equation for the quintic transformation,
we derive the four forms as follows :— '

L 2% 4-day(a®—y*) +4ay(1—a'y)=0.

IL  {2*—y*+day(x—y)}*—~16ay(1—a*) =0, that is
a® 416+ 152%" 4 y° — 2ay(8 — b+ 10a%* — by* 4 8a'y*) =0.

L (2°4152% +16ay*+y°)* — day(8 — ba*+ 102y — 5y + 82y*)*=0, that is
a"+655a"y* 46552 4 y° — 6402%* — 6402y*
“+ay(—256+3202°+320y* — T02* — 66 02%* — T0y* 4 3202"y* 4 320a%y* — 256 2" =0.

IV,  (2°4-6552° 46552y +y* — 6402y — 6404%°)?
—ay(—256+32004-320y — 702 — 6602y — 70y 4- 3202°y - 3204> — 256 2%*)*=0 :

or expanding the two terms separately, this is
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ay — 65536 | =0
2%y 4163840
zy +163840
vy —138240
2% | 4 409600 | —542720
ay® —138240
ay | — 1280 | 4 44800
o | — 838400 | +631040
@y | — 838400 | 4631040
@yt | — 1280 | + 44800
a8 + 1
@y | 4+ 1310 | — 4900
x| 4+ 430335 | —207200
ahp | +1677252 | —986072
afypt |+ 430335 | —297200
ay | + 1310 | — 4900
Y 1
sy | — 1280 | + 44800
atp | — 838400 | 4631040
atyt | — 838400 | +631040
atyp | — 1280 | 4 44800
oy —138240
atyt |+ 409600 | —542720
aty —138240
ooy 4163840
'ty +163840
oty — 65536
77. The square diagrams are :—
I II.
v v oy ¥y ¥y oy 1 v Uy ¥y oy oy 1
= +1
+4 —16 +10
—5 +15
—20
+5 +15
-~4 +10 —16
+1 +1
1 4+4 45 0 —5 —4 —1 1 — 6+15-20415— 6 +1

=(y+1)(y—1).

MDCCCLXXIYV.

=(y— 1)6: '
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I11.
y° ¥ y* ¥ v y 1
b - ' +1~
2’ —256 +320 —70 #
zt —640 +655
a? +320 —660 +320 “
2t +655 —640
P — 70 +320 — 256
1] +1
+1 — 6 + 15 — 20 + 15 — 6 41
=(y—1)-
1V.
¥ y y* ¥ ¥ y 1
at +1
z° _ 65536 | +163840 | —138240 | + 43520 3590
x +163840 | —133120 | —207360 +133135_ + 43520
z® —138240 | —207360 | +691180 | —207360 | —138240
z* + 43520 +1331357 207360 | —133120 | +163840
z — 3590 7+ 43520 — 138240 1163840 6536
N R R SR
o1 - 6 + 15 — 2 + 15 — 6 +1
=(y—1)~%

where the subscript line, showing in each case what the equation becomes on writing
therein £=1, serves as a verification of the numerical values.

78. The curve L. has at the origin a dp in the nature of a fleflecnode, viz. the two
branches are given by 2°+4y=0, —y*+42=0 respectively; and there are two singular
points at infinity on the two axes respectively, viz. the infinite branches are given by
—y—42°=0, x—49°=0 respectively. Writing the first of these in the form
—yz*—42°=0, we see that the point at infinity on the axis =0 (i. e. the point =0,
2#=0) is =6 dps; and similarly writing for the other branch zz‘—4y°=0, the point at
infinity on the axis y=0 (7. e. the point 2=0, y=0) is =6 dps*.

Moreover, as remarked to me by Professor H. J. S. Suirh, the curve has 8 other dps;

* These results follow from the general formule in the paper ¢ On the Higher Singularities of Plane Curves,”
C. & D. M. J. t. vii. (1865) pp. 212-222 ; but they are at once seen to be true from the consideration that the
curve yz* —a°=0, which has only the singularity in question, is unicursal ; the singularity is thus =6 dps.
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viz. writing » to denote an eighth root of —1, (¢*+1=0), then a dp is 2=w, y=0". - To
verify this observe that these values give

S

w w
Ay —~A
62° =4 6| — 6y° =4 6
+202%° —20 +102%y —10
—10zy* —10 —202%° —20
+ 4y + 4 + 4+ 4
—20z%° +20 —20a%* 420

or the derived functions each vanish. Thus I. has in all 141248, =21 dps.

In II. we have in like manner 141244, =17 dps; viz. instead of the 8 dps, we have
the 4 dps #=4", y=0", (»*+1=0), or, what is the same thing, *=w, y=—u, where
w*4+1=0. But we have besides the 12 dps given by

22—y +bay(2—y)=0, 1—2a’y’=0,
viz. we have in all 141244412, =29 dps.

In III. we thence have 14124246, =21 dps; and, besides, the 12 dps given by

241527y + 1dxy* +4*=0, 8—5a°4 102y —5y*+ 8a*y*=0,
inall 14124246412, =33 dps.

And in IV. we thence have 1412414346, =23 dps; and, besides, the 12 dps
given by

2°4 6552+ 6552y +1° — 6402y — 6402 =0,
— 256432024320y — 702> — 6602y — 70y + 3202y + 3202y> — 2562°y* =0
(these curves intersect in 16 points, 4 of them at infinity, in pairs on the lines =0,
y=0 respectively; and the intersections at infinity being excluded, there remain
16 —4, =12 intersections); there are thusin all 14+1241434-6412, =35 dps.

Or arranging the results in a tabular form and adding the values of the deficiency,

we have '

dps. dps. Def.
L 141248 =21, =15,
L 141244412 29, 7,
ML 141242+ 6412 38, 3,

1V. 1412414 34 6412 35, 1,

so that the curve IV. is a curve of deficiency 1, or bicursal curve. It appears by
JacoBI’s investigation for the quintic transformation (Fund. Nov. pp. 26-28) that we can
in fact express , y, that is «®, ¢ rationally in terms of the parameters o, 8 connected by
the equation

o =24(1+a+B),
which is that of a general cubic (deficiency =1); we in fact have

2—a vt ub

a—26=;‘i’ =
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that is,

H=0)=8(5p)r H==B(I555).

where o, B satisfy the relation just referred to. The actual verification of the equa-
tion IV. by means of these values would be a work of some labour.
79. In the general case p an odd prime, then in I. we have at the origin a dp (in the

(p—])g(p—2)dps.

nature of a fleflecnode) and at infinity 2 singular points each = I infer,

from a result obtained by Professor Smirh, that there are besides (p—1)(p—3)dps;
but I have not investigated the nature of these. And the Table of dps and deficiency
then is

dps. Def.
L 14+(=1(=2+ (—1)p—9 — |2 Tp+6, 4y
IL 1+(p—1)(p—2)+3(p—1)(p—3)+3(p*~-1) 210 —6p+4, 2p—
HL 14+(p—1)(p—2)+2(p—1)(p—3)+1(p*—1)+3(p*—1) 2p? 410+3 p—
V. 1+(p=1)(r—-2)+s(p—Dp—3)+3(p =D +i(p*~ D) +3(p*—1) [20°—Ip+5, p—

viz. his values of the deficiencies being as in the last column, the total number of dps
must be as in the last but one column..

)
3
2
3
2



